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I. Introduction

Inertial navigation has evolved to the point that

the traditional gravity model is a principle error source

in advanced, precise systems. Future autonomous strategic

systems, such as the cruise missile, will likely require

a more accurate gravity model. Mission success depends

on navigation system accuracy not gravity model accuracy

per se. So an improved gravity model should be judged by

system-level performance expressed, for example, as circular-

error-probable (CEP). The objective of this research is

to develop a new computational technique whereby alterna-

tive gravity models can be compared by expected navigation

system accuracy on realistic mission scenarios.

This section presents a discussion of the background

and motivation for the research. The role of the gravity

model and the navigation system errors induced by this

model are interpreted for this study. The need for a

statistical evaluation is explained, and the present methods

for performing such analyses are discussed. The short-

comings of these present statistical evaluation methods

are given as motivation for the research.

1.1 The Role of the Gravity Model in Inertial Navigation

The gravity model in an inertial navigation system

is a subsystem or component providing one part of the

information required for navigation position, velocity and

1



attitude estimates (see Figure 1). The exact role of

the gravity model, the nature of modeling errors, and the

effect of such errors on navigation estimates must be under-

stood to appreciate the impetus for gravity model improve-

ments.

AAn inertial navigation system senses the vehicle

dynamics and applies the laws of physics to estimate posi-

tion, velocity and attitude. The inertial navigation

system performs two fundamental tasks. First, the vehicle

rotational velocity . is measured and used to track attitude.

Second, position r and velocity x are computed by inte-

grating an estimate of acceleration a.

The total vehicle acceleration cannot be sensed,

since the gravity field acts on both the vehicle and the

accelerometers. The total acceleration is given by

a = f+ G)

where f is the specific force (force per unit mass) from

contact forces such as aerodynamic drag and G is gravita-

tional acceleration due to mass attraction acting on the

vehicle. The estimate of acceleration is made by

a= + G (r) (la)

where .... indicates navigation estimates, I'" indicates

measured data, and G (*) is the gravitation model."m

The gravity model term in (la) introduces error by

a. Modeling errors, and

b. Evaluation errors

2
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The evaluation errors come from evaluating gravitation at

an erroneous position r. This evaluation error is respon-

sible for the principle navigation system error maode - the

Schuler mode. The evaluation error is not an error induced

by the model and is therefore considered part of the in-

ertial navigation error propagation. The modeling error

can be stud as a gravity disturbance

6g(1) = Gm(r) - G(r) (2)

given pefect position information. This error of (2)

introduced by (la) creates the navigation system errors

which are the subject of this work.

1.2 The Traditional Gravity Model

The gravity model used in most present operational

inertial navigators is based on a gravity field perpendic-

ular ("normal" field) to an ellipsoid which approximates

the mean sea-level equipotential surface called the geoid.

In some instances, zonal spherical harmonic or spheroidal

equipotential surface models are used as a basis for the

gravity model. The associated simple gravity models are

within 400 mgal* of measured gravity values.

The use of such simple models has been prevalent for

two reasons. First, computational resources are limited

for the on-line application. Second, the presence of other

system error sources has, in the past, reduced the incentive

* 1 mgal = 10- 3 galileo = 10-3cm/sec 2 = l0-5 m/sec2 " lpg

4



for a more complex and accurate model. Kayton [Ref 1] in

1960 suggested that these simple models are sufficient

for system with accelerometer uncertainty greater than

20 mgal -- an estimate at that time of gravity disturbance

standard deviation.

1.3 Impetus for Model Improvement

Since the late 1940's, inertial navigation design has

progressed to a fine art. Refinements have been concen-

trated principally in inertial instrument design and cali-

bration with other basic concepts essentially intact. The

error levels of periodically recalibrated inertial components

have reached the point that the traditional gravity model

is now a principle error source in overall system accuracy.

It is easy to understand why a detailed new model might be

used in a flight test environment where data purity is

important. However, one could question the need on-line

for model refinements since the errors induced are not

unacceptable for most navigation applications. The impetus

comes from the potential military application -- where the

impetus for inertial navigation originated. In the autono-

mous delivery of weapons, any error significantly diminishes

weapon systems's effectiveness, so these gravity induced

errors cannot be ignored. The self-contained nature of

inertial navigation virtually assures a continued military

application even with advanced radiometric navigation sys-

tems available. The evolution of strategic forces to

5



include cruise missile concepts provides the prime motiva-

tion for the increased emphasis on refining the traditional

gravity modeling used in on-line inertial navigation.

1.4 The Need for Model Performance Evaluation

The need for an improved gravity model may be met

using existing data base and on-line modeling methods [Ref

2]. While future research may refine and make them more

efficient, several methods of computing gravity exist today.

These methods are primarily based on Green's and Stoke's

theorems [Ref 3] which require data over a closed surface

(approximately) encompassing all earth mass. Heretofore,

data limitations over vast ocean expanses have diminished

the accuracy of these models. Recent satellite altimetry

measurements give an estimate of the anomalous potential*

over much of these regions. These new data can be combined

with existing gravity data using heterogeneous data proces-

sing techniques [Ref 4]. This increased data base can then

be used to identify parameters of a more precise model for

on-line application.

The gravity models which might be used on-line have

many forms. The canonical form is the Legendre function

expansion based on a Fourier series representation of the

geoid. This spherical harmonic series can theoretically be

expanded to any degree and order required to yield a residual

* See Reference 3 and Appendix A for definitions of anomal-
ous field quantities.
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feld below gn e 31. Mesrmn

errors and computational costs argue against carrying such

modeling to the extreme, however. This form of globally

applicable functional approximation is countered by other

methods which seek to describe gravity in a smaller region

using interpolating functions [Ref 5]. The rationale is

that fewer coefficients, hence fewer calculations, may be

I! requir3d for the same accuracy within a restricted region.

The point mass grid of the MINUTEMAN launch region gravity

model [Ref 6] is a compromise between these extremes.

While this model is a globally valid approximation, it has

more detail and greater accuracy in the critical launch

region. The Poisson integral, Stoke's integral, and the

coating method [Ref 2:39-54] give a more direct link between

measured data on one hand and gravity estimates on the

other. Approximations of field theory integrals consti-

tute alternate forms of gravity modeling.

1.5 Present Methods for Evaluating Alternative Gravity

Models

An abundance of modeling methods exists then. What

is lacking is a consistent way of comparing models and

specifically evaluating the error contribution to inertial

navigation performance corresponding to each candidate

model. There are two fundamentally different methods of

calculating a system accuracy measurea deterministic and

statistical. In a deterministic analysis a complex gravity

7



model is used as the "truth" model. The design mission

is simulated, and the resulting inertial navigation esti-

mates are compared to the true position, velocity and atti-

tude. This deterministic study yields error as a function

of time. The resulting error profile is only valid for

that particular mission and, hence, should be considered

one (simulated) sample out of the set of possible missions.

Since the truth model is limited in scope (it still has

errors of omission) and has an inherently inaccurate data

base (errors of commission cannot be avoided), some resid-

ual uncertainty remains in even this result.
•The statistical approach, on the other hand, frankly.I-

admits these model uncertainties at the outset and proposes

to project these model errors in terms of navigation per-

A formance. To this end, the statistics of the residual

field (correlation function) coupled with a model of either

the inertial navigator per se or of the error propagation

in the inertial navigator are used to produce estimates of

inertial navigation error statistics. The general strategy

of statistical analysis is presented in Figure 2.

1.6 Trajectory Models

The trajectory model includes all environmental,

dynamic and ambient condition data required for analyses.

Usually, posftion, velocity, specific force, and attitude

are sufficient. Other conditions such as temperature

may influence the operation of the inertial system enough

°• 8
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to warrant modeling. For the basic problem of providing

trajectory information, two clear methods exist.

For relatively simple trajectories, closed-form

mathematical expressions can be derived and offer a compu-

tationally efficient manner of providing the required

data. Examples of this type of model are used in Section

IV studies.

While complex trajectories could theoretically be

decomposed into a finite number of simple segments, deriving

closed-form expressions becomes an onerous burden. Computer

approximation based on the kinematic relationships of such

segments can be programmed and offers a flexible method of

generating the design mission data. The PROFGEN [Ref 7],

profile &_enerator, program developed by Musick is an excel-

lent example of this approach. The program accepts mission

phase specifications as inputs. The results for contiguous

segments are abutted, and the overall mission trajectory

is the output.

Mission r(t)
Phase PROFGEN v v(t)
Specifications etc.

Adequate methods exist to furnish the trajectory

information required in the statistical analysis. The great

flexibility of these methods should handle any conceivable

navigation mission. Examples are presented in later sec-

tions using both closed-form trajectories and PROFGEN

approximations.

10



1.7 Inertial Navigation System Model

The inertial navigation system has been modeled by

two methods which should be adequate for any statistical

analysis: whole-valued simulation and error propagation

model. The navigation system model used may be dictated

by the analysis method, but analyses have been conducted

with both of these model types.

The whole-valued simulation is a direct simulation

of the inertial navigation algorithm. Errors are simu-

lated in the input data to the algorithm and are observed

in the output navigation estimates. In modern navigation

systems, the algorithm is already in the form of a digital

computer program, so the operational algorithm may be used

directly. More generally, the double integration of

acceleration may be used as a generic navigation system

model with no direct link to an existing system.

The second method is simply a first-order approxima-

tion of the propagation of errors through the inertial

navigation system. Only the errors and not the whole-

valued estimates are modeled. Britting has shown that

this first-order error model can be formulated in a general

manner [Ref 8]. This formulation can be cast in the form

of a first-order, vector differential equation [Ref 9t

Equation 3-1, p22]

(t + G(t)a(t) 3



where

x(t) is an n-state mathematical vector of navigational

errors in position, velocity, and attitude esti-

mates

F(t) is an nXn error propagation matrix relating error

rate to present state;

u(t) is an m-dimensional vector of gravity disturbance

quantities; and

G(t) is an nXm distribution matrix.

Note that for this work, u(t) contains only those terms

associated with geodetic errors. For example, u(t) = 6g(t).

Other system error sources such as accelerometer bias and

gyroscopic drift are assumed to be zero, so the results

obtained here will reflect the effects of geodetic errors

alone.

The whole-valued simulation contains nonlinearities

which the error propagation model loses by the first-order

expansion. The error propagation model has, however, been

widely accepted since it accurately models navigation sys-

tem behavior observed in flight tests. Either of these

methods, then, will sufficiently model the inertial naviga-

tion errors to support the statistical analysis.

1.8 Gravity Disturbance Statistical Models

The statistics of the disturbance field for a particu-

lar gravity model can be summarized in one scalar correla-

tion function (see Appendix A). With this function as a

12



basis, all other auto- and cross-correlations of anomalous

gravity terms can be derived [Ref 4]. Field theory provides

the functional interrelationships between these terms

[Ref 3]. Models for these basic functions have been devel-

oped -- primarily using gravity anomaly autocorrelation

function as a basis. Three of the fully developed models

are:a

a. Linear state space based on a Gauss-Markov process,

b. Anomaly degree variance based on a spherical

V harmonic expression of the correlation function,

and

c. Attenuated white noise based on a subterranean

white noise process for anomalous potential.

Details of these models will be presented in examples

of Sections IV, V, and VI. For now, the point is that

adequate models exist to support the statistical evalua-

tion.

1.9 Present Methods of Statistical Analysis

The central element (Figure 2) of the general strategy

is the analysis method. This method combines the three

models just discussed to produce an estimate of the navi-

gation system error statistics caused by the errors in

modeling gravity. Two distinct approaches have been taken

in the past: Monte Carlo and linear state space covariance

analysis. These methods differ considerably and must be

explored separately to appreciate the inherent strengths

and weaknesses of each.

" 13



1.9.1 Monte Carlo Method

First, the Monte Carlo method takes a direct mission

simulation approach (Figure 3). It is, in fact, an ensemble

of deterministic cases corresponding to an ensemble of

residual field realizations. The gravity disturbance

profiles are produced in such a way that in the limit

they match the correlations given by the residual field

correlation function. These simulations may be either

of the navigation equations directly (whole-valued simula-

tion) or of navigation error propagation. In either case,

the ultimate output of these simulations is an ensemble

of error-time histories from which means, standard devia-

tions, covariances, and other sample statistics can be cal-

culated. Since histograms can be formed for any particular

error at any point in time, a frequency function can be

approximated. This feature is not of significant impor-

tance to this work since second order statistics are usually

sufficient to specify system accuracy.

The significant cost of the Monte Carlo method is the

computation time required to simulate the trajectories.

Enough cases must be run to yield statistics of high confi-

dence. In a recent advanced cruise missile study, Chatfield

[Ref 10] used 90 simulations to produce the desired circu-

lar-error-probable statistic.

14
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While this cost is considerable, the fact that the

analysis could be performed demonstrates the flexibility

of this method. The Monte Carlo restrictions on trajec-

tory are minor, being essentially limited to the ones

imposed by the trajectory simulator. In addition to this

scenario flexibility, considerable freedom exists in the

functional form of the correlation model. The gravity

disturbance profiles are produced using the residual field

correlation function. While the residual field is depen-

dent on the gravity model, there are, as noted above,

several developed functional models to summarize the corre-

lations of the residual field. The Monte Carlo method

imposes no limitation on the functional form of the corre-

lation model.

1.9.2 Linear State Space Covariance Analysis

The linear state space covariance approach was formu-

lated by Levine and Gelb in a landmark paper [Ref 11] in

1968. This method and the attendant stochastic gravity

model have been refined to be consistent with most of the

field theory impositions [Ref 12].

The gravity disturbance terms, u, are modeled as the

output of a linear filter driven by white, gaussian, inde-
p

pendent noise sources. The state vector model of this

linear filter is

x (t) = F (t)x (t) + G (t)q(t) (4)

16
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where q(t) is a white gaussian noise process.

The output equation to form the disturbance terms is

(t) = C (t)x (t) (5)
9 -g

The white noise terms, q(t), are modeled to have correla-

tion

46[q(t)qT(p)] Qg(t) 6(p-t) (6)
J9

where 6(.) is the Dirac delta function. An augmented

state (see Figure 4) can now be defined as

The augmented state vector differential equation is
a(t) = Fa(t)xa(t) + Ga(t)q(t) (8)

where

F(t) G(t)C
Fa(t) = ........ ()

0 F (t)g
and

0

Ga (t) .... (10)

With this augmented form the system covariance integral

becomes

t t T
Pa (t) = Sto x o(t,p) (P)Qg(p)6(q-p)GT(q)#T(t,q)dpdq

where

a(t t l ) = Fa(t) Da( t, tl) (12a)

17
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subject to

Oa(t 1i t l ) = I (12b)

The delta function allows a reduction to
t Tta( t, p) a(p)Q g(p)G a(p)o Ta(t, p)dp (.13)

Applying Leibnitz' rule now yields

4

Pa(t) = F a(t)Pa(t)+P a(t)FT(t)+Ga(t)Qg(t) Ga(t) (14)

This equation can be solved numerically by a number of

powerful and efficient numerical integration techniques.

The fact that the solution can be cast in this mold is

the most persuasive argument for using linear state space

methods.

The key to this efficiency is the delta function

which allows one level of integration to be solved directly

without approximation. The Gauss-Markov model which pro-

duced this advantage is the root of errors that can result

when linear state space covariance analysis is used on

complex trajectories.

Obviously, the linear state space covariance analysis

restricts the gravity disturbance statistical model form to

one compatible with linear state space description. This

restriction, while undesirable, is much less serious than

the loss of trajectory generality which accompanies the

time-domain use of the Gauss-Markov model. Gravity disturb-

ance is a spatial function and hence the statistical repre-

sentation is a spatial process. The conversion from

19



I.I

spatial to a temporal representation of the statistical

process, symbolized in Figure 5, causes the resulting

model to err when the trajectory varies from a particular

form.

The details of the spatial to temporal model conver-

sion are presented in Appendix B. To understand why this

conversion creates error, one need only consider the vari-

ables involved. The spatial model has central angle, i,

as an independent variable. Central angle is not a scalar

since, in general, the total central angle change is not

equal to the sum of the central angle changes along mission

segments. Time is a scalar and the conversion to the time

independent variable means that the underlying relationship

is mismodeled, in general. For the special case of a great

circle trajectory, the total central angle change is the

sum of the segment changes and the conversion is also only

strictly valid for great circle missions with non-decreasing

central angle of less than 1800.

Another trajectory restriction is imposed by the

original spatial Gauss-Markov model. This formulation does

7 not treat changes in altitude, and therefore, the model

is only valid for constant altitude trajectories as well.

Equivalent statistics may be calculated from the original

at other altitude levels [Ref 13]; however, combining these

into a linear syster format requires some improvisation.

20
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In summary then, the only trajectory for which the

linear state space covariance analysis is valid is a con-

stant altitude, great circle case with a monotonically

non-decreasing central angle of less than 1800. So, the

considerable computation efficiency achieved through (14)

has the severe trajectory limitations as a price. Although

the trajectory restrictions of the Gauss-Markov model

are well-known, the extent of errors induced when the

trajectory restrictions are violated is not known.

*Numerical examples will be presented in Section IV to

explore this area.

1.10 Motivation for Research

Adequate models exist for trajectory, for navigation

system, and for gravity disturbance statistics, but the two

present methods of statistical analysis have serious dis-

advantages which limit their usefulness. The Monte Carlo

t method has virtually no restrictions, but the requirement

to produce samples until the statistics stabilize is often

costly. On the other hand, the trajectory restrictions

of the linear state space covariance method significantly

limit the usefulness of this method. The gravity disturb-

ance statistical model is also limited to a particular

Gauss-Markov form for the linear state space method, and

this constraint might limit the utility of this evaluation

method on some alternative on-line gravity models such as

a truncated spherical harmonic model.

22
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An alternative to these methods is needed which is

more flexible than linear state space covariance analysis

and which is more efficient than Monte Carlo. To develop

such an alternative is the objective of this research.

1.11 Overview of the Research

The following sections document the research to

develop, verify and demonstrate the alternative statistical
analysis method. Section II presents the theoretical

development and Section III the numerical method. The new

method is compared to the linear state space method in

Section IV and to Monte Carlo in Section V. These compari-

sons constitute a thorough verification of both the theo-

retical and numerical aspects of the new analysis technique.

Demonstrations are then presented (Sections VI, VII, and

VIII) which show the flexibility of this new analysis method

to treat a variety of gravity models and gravity disturb-

ance statistical modeling methods. In a final develop-

ment, the effects of Kalman filter updates on gravity

induced navigation error statistics are included (Section

IX) in the analysis algorithm, and this update process is

verified. In all, a new statistical analysis technique

is presented to evaluate the system errors induced by

gravity modeling errors.
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II. Development of a Gravity Model Performance
Measure Based on an Inertial Navigation Error
Covariance Integral

In Section I, the present methods of statistical

analysis were reviewed. The Monte Carlo method, while

flexible, has significant computational cost. The linear

state space covariance analysis is computationally efficient

but has unacceptable trajectory restrictions associated

with the Gauss-Markov gravity disturbance statistical

model. To develop an efficient yet flexible alternative

analysis method, a line of development is suggested which

is parallel to the linear state space (Figure 5) but which

avoids the dependence on the Gauss-Markov statistical model.

!The purpose of this section is to present the theoretical

development of the covariance integral as a candidate

4 alternative statistical analysis method.

2.1 General Approach

The genealogy of the linear state space covariance

analysis method (portrayed symbolically in Figure 5) and

the parallel approach to be taken here are shown in Figure

6. The crucial change-of-variables (from central angle

to time t) does not occur in this new "covariance integral"

formulation; the spatial dependence of the correlations is

retained. This approach does not exclude the Gauss-Markov

gravity disturbance statistical model from use. But, it

does mean that the gravity disturbance correlations from

25
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that model are used directly, and not the temporal linear

filter model of gravity disturbance (4). As a consequence,

the integral expression of the navigation error covariance

will not contain a simplifying Dirac delta function as in

(11). The covariance integral becomes, then, the end

object of the theoretical development. The final analysis

will be simply a numerical approximation of this integral.

Theoretical development of the new "covariance integrals"

statistical evaluation method is made in the next subsec-

tion.

2.2 The Covariance Integral Theoretical Development

The sample space definition is the key to any statis-

tical analysis. The view taken here is that the desired

error statistics represent, in a performance index sense,

the expected performance over some range e of possible

missions. Then to produce statistics representative of

missions in e, the statistical expectation must be over

all OE E . A mission 0 is simply a position-time history or

trajectory and corresponds to one sample from the space 0.

For each 0, a navigation propagation characteristic is

defined and a gravity disturbance is generated. This

disturbance is implicitly a function of time being expli-

citly dependent on the r(t) dictated by 0. Then the navi-

gation error dynamics (3) may be written as

(t; 0) = F(t;e) L(t;0) + G(t;0) u(ti) (15)
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with initial error state x(t 0;9) which will be retained

in the development for generality.

Since (15) is a linear system, there exists a state

transition matrix (D(t,t1 ;O) which satisfies

6(t,t11e) F(t;O) 0(t,t13e) (6

~(t~t~) = I(17)

This matrix also satisfies the semigroup property

V(t3 t1 ;e) O(t st2;)~t, 1  (18)

which will be essential in the upcoming numerical analysis.

For now these properties allow the solution of (15) to be

cast in the form

t
x(t;e) = St 0(t,p;O) G(p;e) u(p;8) dp + cD(t,t 0 )x(t0 ;G)

0 (19)

The next step toward forming the covariance matrix is to

fro produce the outer product
t t

xs(t;0) x T(t;e) St St 0 (t,p;O)G(p;O) [u2(p;8)uRT(q;O)]

G T(q;0)0 T (t,q. e)dpdq

4+ ttt 0 ; e) Sti Ea( t0 ;o)uT(p; 0)] GT (p;e)
0

+ (a)(t,t 0 ;O) St~ [2E(t 0 ;e)a T (p;G)1 G T(p;O)
t0

0, T (t~pe)dpT

IT
+ O(t't 0 ) Lx(t_ ;0)xE (t 0 1  ~T(t't ;0)

(20)
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The navigation error state covariance P(t) is defined as

the expectation of this outer product over all mission 0

within the mission region E). That is,

P(t) {x(t; )xT(t;0)] (21)

Now to cast the problem in a form for which computer

solution is practical, assume that the mission region e

has been selected sufficiently small that one mission, the

design mission e0, can represent the mission geometries and

the navigation error dynamics throughout that region (Figure

7). The disturbance, u(t,O), varies more with geographic

variations; hence, is retained in that form. The design

mission e defines an occurrence of a position-time history0

r(t) for tE(to,tf). The present assumptions mean the

following approximation replacements can occur as defined

below

F(t;e)4--F(t) = F(t;O0) (22)

G(t;e)--G(t) = G(t;6 o ) (23)
0

( , l~ ) @(~ t )  0(t,tl~e o )  (24)

This replacement will simplify taking the expectation

since F(t), G(t), and 0(t,p) are not changed over the

range of e. Without such a simplification, the expectation

expressed by (21) would be extremely difficult to approxi-

mate by other than Monte Carlo analysis. Applying (21) to

(20) then yields
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t t
P(t) =t 0t 0 1(t,p)G(p) D[u(p;e)uT(q;e)] GT(q) T(t,q)dpdq

+ E(t) + ET(t) + (t, to)P(to )0T (t,to) (25)

andit r T - T
E(t) = 0(t,to)Xt x(t°;e)uT(P;e) GT(p)T(tp)dp

e e(26)

The initial covariance, P(to), and hence, x(to;e), will

be modeled as identically zero for the following develop-

ment. A perfect initial condition is thus assumed. The

penalty for this simplification is that calibration and

alignment errors which are geodetic in origin cannot be

included as initial conditions. Should it becQme important

to include such terms with the gravity modeling error evalu-

ation, some additional development will be required to

approximate (26). Alternatively, calibration and align-

ment can be included as part of the design mission. The

navigation error propagation model and the trajectory must

reflect this fact.

By the above simplifying assumptions, the last three

terms in (25) are removed yielding

t t T
P(t) = to t 0(t~p)G(p)Q(p,q)GT(q) OT(t,q)dpdq (27)

where
Q(p,q) = 6 [u(p;e)u T (q;e)) 

(28)
6.0

This geodetic error correlation function Q(p,q) sum-

marizes the statistical relations between gravity errors

at time p with those at time q. Since u(p,e) is, in
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reality, [Er(p)] for r(p) defined by e, it is more correct

to express this function in terms of positions (i.e.,

QfEx(p),r(q)]). Again, e0 yields the required position

4history, and r(p) and r(q) are defined by 0 for evalua-

tions of the correlation function model.

The elements of the Q-matrix are auto- and cross-

correlation functions which, as previously discussed, can

be derived from one scalar correlation function model [see

Appendix A]. For this work it suffices to note that a

body of theory exists on the relationships of the corre-

lation of anomalous gravity disturbance vector 6g and

undulation of the geoid N. Related terms are vertical

deflections, - and , gravity anomaly 6g, and anomalous

potential T. These anomalous gravity terms are defined in

Appendix A. One purpose here is to develop a scheme gene-

ral enough to allow a correlation modeling choice.

Equation (27) is the desired expression of navigation

error covariance as an integral involving the trajectory,

error propagation, and correlation function models. Numeri-

cal methods will be derived in the next section to approxi-

mate (27) directly. Another formulation is suggested by

the linear state space methods.

Equation (27) is similar to (11) of the linear state

space statistical analyses. Computational advantage is

gained in that development when Leibnitz' rule is applied.

Following this example yields

32

Mimi



P(t) =F(t)P(t) + P(t)FT(t) + G(t)D(t) + DT(t)GT(t) (29a)

where

D(t) = 0to Q(t,p)GT(p) eTct,p)dp (29b)

Since time appears as an argument of Q(.,.) differentia-

tion of (29b) will not yield a simple form in general.

Combining (29b) with the integral form of (29a) yields a

pair of nested single integrals which can be approximated,

instead of directly approximating (27). Approximations

based on this nested integrals approach will also be

developed in the next section.

2.3 Comparisons to Present Statistical Analysis Methods

The objectives of this "covariance integral" evalua-

tion method are efficiency and flexibility advantage over

existing methods of gravity model statistical evaluation.

The efficiency of a numerically approximated covariance

integral is compared to Monte Carlo in Section V. This

comparison must wait until then because first the develop-

ment of numerical methods for approximating the covariance

integral must be accomplished. These numerical methods are

developed in Section III. However, the flexibility compari-

sons can be made at this point.

Flexibility, as used here, is the facility to process

a variety of models in either of the three categoriest

trajectory, navigation system, and disturbance statistics.
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The model flexibility for the new covariance integral

formulation is presented in Table I along with the two

current analysis methods. This new method is, as desired,

more flexible than the linear state space covariance

analysis.

The trajectory flexibility is the major concern with

the linear state space method. The formulation of (27),

or the equivalent (29), impose no special constraint on

r(t), the trajectory. As long as the Q-matrix and F-matrix

can be evaluated using r(t), the covariance integral offers

a means of evaluating the system performance of the gravity

model on any trajectory.

The linear state space evaluation approach is forced

to use the Gauss-Markov gravity disturbance statistical

model. This restriction is not, of itself, a major concern,

but it is a definite limitation. On the other hand, the

new formulation requires only that the disturbance correla-

tions be modeled as spatially dependent quantities for

which r(p) and r(q) from the design mission will serve as

inputs. This flexibility allows the analyst options in this

modeling which may simplify the overall task. A demonstra-

tion using three different model forms for the gravity dis-

turbance statistics is presented in Section VI.

The navigation model is restricted in this new formula-

tion. The linear state space navigation error propagation

model shared by linear state space and the covariance integral
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formulations is not considered a serious drawback because

the model is widely-accepted as a valid system description.

The covariance integral approach gives the desired

model flexibility. The promise of greater efficiency

than Monte Carlo can be shown only after a numerical

approximation algorithm is developed and proven.

t '
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III. Numerical Approximation the Covariance Integral

In Section I, the motivation was given for developing

a new statistical method to evaluate system accuracy per-

formance of gravity models. The theoretical basis for the

covariance integral (27), presented in Section II, offers

considerable freedom in model selections. Except for path-

ologically simple cases, a closed-form expression for covari-

ance integral cannot be expected, so a means of approxi-

tmating the integrations is needed. The main purpose of

this section is to investigate alternative approximation

(procedures and to select one procedure for futher verifica-

tion, demonstration, and development. Approximating the

covariance integral is straightforward, but computational

cost becomes prohibitive for realistic problems. Therefore,

this section also addresses the data logistics issue which

is critical in forming an economically feasible analysis

method.

Two general lines can be followed to approximate the

covariance integral. A direct approximation can be made

by replacing the double integration of (27) with finite

double summations. An alternative, referred to as the

Nested Integrals method, is to approximate the integrals

of (29b) and (29a) in that order. Recursive algorithms

will be developed along both these theoretically equiva-

lent lines after the common computational problems are
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addressed. Both the accuracy and efficiency of these

candidate algorithms will then be assessed in order to

select one method for further study.

The next three subsections are devoted to the computa-

tional details of these algorithms. The reader not

interested in these matters may wish to proceed to sub-

W section 3.4 where the comparison of the developed algo-

rithms begins.

3.1 Common Computational Problems

The theoretical work of this research could be covered

without discussing the techniques used in producing numeri-

Acal results. Such treatment would neglect an issue criti-

cal to the use of the covariance integral statistical

method. In developing computer programs to execute the

approximations of (27) and (29), considerable study and

e.-.periment went into the data flow and algorithmic struc-

ture. This subsection presents the details of these soft-

ware design decisions, because the solution reached in

this study may be applicable to other studies.

Several arbitrary decisions must be made in designing

software for a general requirement like "Evaluate (27) with

a numerical approximation over a wide range of trajectory,

error propagation, and gravity disturbance models."

Other general specifications include efficiency and accu-

racy requirements. Factors which influence these decisions

are4
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a. The specific problem to be solved. The strategy

used on simple problems like the Schuler loop examples,

which are presented later in this section, is certainly

different from that used on the full-scale problems pre-

sented in the following sections.

b. Computing system capacities. Available computer

core, input-output efficiency, and throughput are examples

of the capacities of a specific computational facility

which should be considered.

c. Available support software. Computer file record

management and subroutine libraries should be exploited.

d. General user environment. Priority is established

at most large computing facilities based on many factors,

and this general environment influences the nature of the

software design.

The decisions made in preparing software for this study

were based on using a CDC CYBER 74 computing facility in

an environment which encourages short multi-step processes

over long computation time jobs. The following decisions

were influenced by this environment and this inherent

bias should be remembered. With this warning, the following

discussion gives one example of a solution to the computa-

tional burden associated with approximating the covariance

integral.

Either a direct approximation of (27) or the Nested

Integrals approximation of (29) requires r(t) and O(p,q)
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data. Methods for producing 1(t) exist [Ref 7 3 for trajec-

tories too complex for closed-form mathematical expressions.

The (-matrices can be produced using (16) and (17) by ordi-

nary differential equation, predictor-corrector methods

[e.g. Ref 14]. Once produced, the logistics of supplying

these data must be resolved. This issue is treated first

because the algorithmic forms are influenced by the data

flow. Since the Nested Integrals data requirements are

practically the same as the direct approximations, the

direct method will be used as an example in the following

discussion.

The direct integral approximations will be based on

a finite double summation replacing (27). That is,

n nP(n) Z Z 0 (n,i)G(i)Q(i,j)GT (Do T(n, j) AtiAtjSn(i Ij)

i=O j=O
~4(30)

where Sn(i,j) is the quadrature weighting associated with

the integrand evaluation at (p,q) = (i ,j ). Details of

the weighting factor are covered later in the algorithm

developments. Attention will now be given to the nature

of the data and to the manner in which it is produced.

Fundamental to the formation of (30) is a discreti-

zation of the time interval (t otn). One can view the

7 integrals of (27) as a process applied to a signal, the

integrand. With this approach, the time steps should be

small enough to give at least adequate representation of

the integrand as specified by Shannon's sampling theorem.
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The frequency spectrum of the integrand is affected by

all three analysis models. The trajectory affects both

the ( and Q matrices. The inertial navigation error propa-

gation model along with the design mission trajectory model

define the F matrix used in computing . The gravity

disturbance correlation model is embodied in Q, which has

position arguments defined by the trajectory. The dynamics

of the trajectory, the dynamics of the error propagation

model, and the spatial spectrum of the gravity disturbance

correlation model must all be considered in subdividing

the time interval.

Once a proper time partition is defined, the integrand

must be evaluated for every pair (ti,t.) such that both ti

and t. are in the set t 0,tl, ..., Y. This 0-matrix

data need is a critical computational issue which will be

addressed at length.

If ns is the number of error states, the integral sum-

mation can also be reduced from n2 terms to in (n +1)

because P(t) is symmetric. This symmetric property, as

will be shown later, can be used to decrease the number of

' (i,j) matrices. That is, the only 0(i,j) matrices required

are for (i , j) pairs such that 0 < j : i < N. Since

c- (i,j) = I when i=j, the true requirement is for ( i, j)

pairs such that 0 < j < i < N. For example, 0(4,7)

need not be calculated, whereas 0(7,4) is required. The

number of -matrices required is J(N+l)(N+2) - (N+l) =

N(N+1). To demonstrate the magnitude of this data burden,

4 1 
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consider a 500-point time partition and 9X9 0-matrices. I
-The 12,250 0-matrices would require 10,145,250 words of

storage.

Clearly, the logistics of these data must be care-

fully planned to make this analysis method economically

feasible. The semi-group property, equation (18), can be

used to reduce this data storage, but at a cost in compu-

tation time. For discussion purposes, let N=3. The approxi-

mation stated in (30) requires 0(l,0), ((2,1), 0(2,0),

0(3,2), 0(3,1), and (3,0). All of these can be produced

from ((3,2), 0(2,1), and 0(1,0) using(18). To see this,

note that

(1,0) = (1,0) (31a)

@(2,1) = @(2,1) (31b)
ID(2,0) (D@(2,1) 0(1,0) (31c) I

V3,2) :(3,2) (31d)

I(3,1) = @(3,2) 0(2,1) (3le)

0(3,0) = 0(3,2) @(2,l) 0(1,o) (31f)

For N=3, then, the storage requirement can be reduced from

six to three -matrices. In general, this technique

requires only N '-matrices as opposed to the N(N+l)

needed for (30). For the 500-point example with 9X9

0 -matrices, the storage requirement decreases from 10,145,

250 to 40,500 words.
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Note that the production of 0(3,0) above, requires

two matrix multiplications. This computational cost is

4i offset by the fact that 0(3,0) is not produced by solving

(16) initialized with D(0,0) = I. Note that although the

product sequence runs backward in time, each 0(i+l,i)

results from a forward-time integration from the initial

condition 0(ii) = I. Questions of numerical stability

must be asked concerning the possibly hundreds of matrix

multiplications which full-scale problems might require.

For the studies presented in this and later sections, a

simple test was performed to test this D-matrix production

technique. D(N,O) was produced by two methods. First,

the C(i,i-l) matrices were calculated using (16) and (17).

From these,

(N,O) = D(N,N-I) O(N,N-2) ... 0(2,1) D(l,o) (32)

was calculated. Then, (N,O) was produced by integrating

(16) initialized with 0(0,0) = I. The elements of these

two alternative O(N,O) matrices were individually compared.

The differences observed were on the order of the computer

word accuracy limit and this technique was judged accurate

enough for the studies which follow.

These test results are unique to the computing system

and model choices. For other applications, a test similar

to the one above is advised prior to conducting an analysis

using the technique of repeated multiplications.
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It should be clear from (31) that a preferred order

of computation exists. Repetitious calculations can be

avoided, for example, if 0(3,1) is calculated and used

prior to 0(3,0). The associative and commutative proper-

ties of matrix addition permit the summation of (30)

such that 0(3,2) comes before 0(3,1) which comer;: before

0 (3,0). In general, an algorithmic form is desired in

which 0(n,n-1), O(n,n-2), ..., O(n,0) are required in that

order. The second index decreases -- moves backward in

time. This order of summation is therefore backward from

the way the sum would normally be formed. Explicit refer-

ence to this reverse-chronological order will be made at

those points in the algorithm developments where the sum-

mations are modified to this desired order.

Another data logistics issue is whether to produce the

(D-matrices in parallel with P computations or to produce

all the data before computing any P values. The parallel

production method means 0(n,n-1) would be produced and

stored just prior to the P(n) computation. All previous

D-matrices would have been produced on previous steps and

stored for retrieval. This approach, therefore, almost

forces a chronologically sequential 0-matrix storage. This

storage mode would be prohibitively costly in computer

input-output time if the reverse-chronological summation

form is used. Another disadvantage is that the trajectory

model which supports ) computation would either have to

44



reside in computer core with the P calculation or be

overlayed iteratively with the P calculation. Except for

simple analyses, the computer core requirements would be a

severe disadvantage on one hand or the peripheral proces-

sing would be costly on the other.

If the parallel computing structure has disadvantages,

the ser.ial design has distinct positive attributes. First,

the trajectory generation and state transition matrix cal-

culation form a natural partition for the analysis. These

two data sets provide all the data for (30) except that

associated with the correlation model. The 0-matrix calcu-

lation requires the trajectory model already, so a parallel

calculation imposes no additional computer core costs. The

data from both trajectory and 0 calculations can be gene-

rated in a natural ascending time order, and the data order

can be reversed in an inexpensive data processing step.

Once these data have been produced and filed, they can be

used repetitively, if needed, without the cost of regene-

ration.

Now, attention must turn to the data retrieval costs.

For reasonably sized problems like the examples in later

sections, a straightforward approach to retrieving these

data for the required computation could require several

hours of peripheral processing time due to the input-output

operations involved. This cost is likely to be the dominant

factor in designing any software to approximate the covari-

ance integral. To understand the magnitude of this
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prospective cost, consider the following. To compute

P(l), $(l,O) is needed; to produce P(2), 0(2,1) and D(i,0)

are required; and to form P(N) a total of N matrices are

71' retrieved. In computing P(1), P(2), ..., P(N-I), and

P(N),a total of JN(N+) -matix fetch operations must be

performed. In later sections, example problems are treated

for which N=408. For such problems, a total of 83,436

fetch operations are required. Since these matrices can-

not allreside in computer core, the input-output time can

be substantial.

Methods of reducing this computational burden must be

considered. Even though all 0-matrices cannot be in core
simultaneously, certainly several may be. To the existing

data processing step, a task can be added to pack the

0-matrices. Several chronologically contiguous 0-matrices

could be packed into each record. Then, several matrices

would be brought into core with each fetch operation. If

k matrices are packed into each record and if N/k is an

integer, the number of record retrievals is decreased from

JN(N+Il) to N(N/k+l). With N=408 and with k=4, the 83,436

record fetches are reduced to 21,012. Even though more

data is transferred, a savings of input-output time is

realized from the avoided fetch operations.

The cost in core storage for this input-output effi-

ciency is modest. Instead of storing one 0-matrix in

core at a time, k of them must be stored. The computer
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core storage increases from n2 to kn2 . The necessary

trade-off between core storage and input-output costs is

a subjective decision influenced primarily by the computing

environment priority system. The method of packing records

offers one means of lowering input-output time should such

economy be desirable. If the experience of these studies

is a general indicator, this issue will be crucial in

using a covariance integral statistical analysis.

The records used in these studies were placed in

reverse chronological order, and four nascent records were

packed into one record prior to the filing step. The type

of file structure has not been addressed in the previous

discussions. The filing suggested is sequential, but a

simple sequential file structure was not used. Three file

structures were considered: sequential, random access or

indexed, and indexed-sequential. The decision to use the

indexed-sequential structure was based partly on experience

and partly on experiment. To clarify the rationale for this

choice, these file structures will be discussed in terms

of how the integral approximation would proceed using each

different structure.

a. Sequential file. This file structure is probably

the most familiar since the normal FORTRAN read and write

operations use and create sequential files. Record retrie-

vals are sequential and usually proceed one record at a

time. For the application here, the 0-matrices would be
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stored in reverse chronological order -- each record being

packed with k data sets. To calculate P(n), the first

record retrieved should contain the T(n,n-1) matrix. The

following operations would occur: rewind file, skip

forward records, read in the next record which con-k

tains (n,n-l), and read and process the remaining records

sequentially. The last record contains 0(l,O).

b. Indexed or random access file. For this file

structure, each record is identified by a key. This key

is assigned at the time the record is filed, and it can be

simply the integer of the highest index in the record (e.g.

key = j for the record containing 0(kj,kj-1) ). As each

record is filed, the record key and the record address

are stored in a dictionary for later address retrieval.

Since the key uniquely identifies the record, the file

chronological order does not have to be reversed, just the

order in which keys are produced in file retrievals. The

operations to calculate P(n) are: calculate key for the

record containing O(n,n-l), find record address in key

dictionary, retrieve record, process this record, and con-

tinue this cycle in a reverse chronological order until

the 0(1,O) matrix is used. The key calculation can be

p simply, key = integer k . For this keying system,

the j-th record contains (kj,kj-1) through T(kj-k+l,kj-k)

data.
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c. Indexed-sequential file. This file structure is

designed for efficient operation in either a random access

or a sequential mode. Each record is assigned a key and

filed like an indexed file. The records are contiguous

in storage, so once the initial record is located by key

search, the next and subsequent records can be retrieved by

sequential mode operations. The fact that every record

retrieved does not require a key search is a significant

savings in some applications. To calculate P(n); the file

containing (n,n-l) is found by calculating the key and

consulting the dictionary; remaining records are read into

core sequentially until the final record containing 0(1,0)

is processed. The key for the reversed chronological file

ascends as time descends. This key could be simply: key
cn+k-l1

N+1 - integer ( k ). The j-th record would then contain

the O(N-jk+k,N-jk+k-l) through O(N-jk+l,N-jk) data.

The sequential file structure was not used because

the file rewind and record skip operations were expected to

use a prohibitive amount of input-output time. Some simple

experiments with random access files indicated that several

hours of input-output time would be needed for one of the

408-point examples of Section IV. When the indexed-

sequential file structure was used on these problems, the

input-output time required was only 1600 seconds -- less

than I hour. The indexed-sequential file structure seems

uniquely in harmony with the data retrieval desired in

these analyses. In the studies performed during this
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research, this file structure afforded substantial compu-

tational costs savings over the other structures.

The savings associated with indexed-sequential file

structure are offset somewhat by increased core require-

ments to accommodate the system software which manages

the record storage and retrieval. If a sequential file

structure were used, these same operations would be required

in the program explicitly, however. Additional savings

with indexed-sequential files are gained by providing a

buffer in core for several records to come in simultaneously.

For the examples analyzed in this study, this increased

core storage requirement was judged to be acceptable in

order that the input-output time requirement be acceptably

low.

In summary, four distinct methods were used to solve

4i the 0--data logistics problem:

a. Only 4(i,i-l) matrices are produced prior to the J
P(t) calculations,

b. 4-matrices are stored in reverse chronological

order for subsequent retrieval,

c. Several 0-matrices are packed into each record of

the data file to decrease the number of record retrievals,

d. Indexed-sequential files are used for efficient

retrieval.
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These methods essentially trade-off computer core increases

for lower input-output time.

Attention has been focused on the need to supply

O-data to the finite summations, but a similar need for

r-data exists in the Q-matrix evaluations. The integrand

evaluations can be organized such that these two data needs

are parallel. While the 0(n,n-1) to f(n,O) matrices are

being calculated and used, the pairs (1n,1n_i) through

(in ro) are needed for the associated Q evaluations. The

r-data can be stored with the O-data by grouping r(i) with

(i,i-l). This pairing of r and Ois convenient since the

coupled trajectory and 0 computations will naturally yield

this set at the same time. Time data may similarly be

required for At i calculation. For this study, the record

structure was:

N m + 1)

r(mk), r(mk-l), ..., r(mk-k+l)

0 (mk,mk-l) , 0 (mk-l,mk-2), .. , (mk-k+l,mk-k) ,

tmk tmkl, tmkk+l

where m =1,2, The record-unique key is the
N

integer N - m + 1. In the examples of Section IV, a four-

element represe~itation of r was used and four (k) data sets

per record. This record format requires 345 words per

record versus the 8? words per record with k = 1. An

additional 1300-word buffer was provided for the record

manager system software. These computer core costs were

judged to be modest in comparison to the input-output time
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savings.

These computational nonsiderations seem mundane

compared to the theoretical aspects of this work. But for

full-scale and realistic problems, attention to these

details will probably be the deciding factor in whether

or not the analysis will be done. The procedures outlined

above solved this problem within the budgetary constraints

of this research project. The analyses performed for

Sections IV through IX would have been unacceptably expen-

sive had the data logistics not been organized efficiently.

These methods should be useful in other covariance integral

approximations. Whether to use any or all of these data

logistics methods should be determined on a case-by-case

basis. Diverse factors which are problem and computer

facility unique will certainly need to be considered.

The algorithmic forms will be developed in the next

subsections. The issues discussed here which influence the

ohoices in algorithmic form are:

a. Decision to produce P(n) recursively, and

b. The efficiencies of reverse chronological sum-

mation.

These factors should be recalled in the algorithmic develop-

ments which follow.

3.2 Two Dimensional Direct Integral Approximations

With these data handling issues concluded, the direct

approximation of (2) can be addressed. The task is to

52



produce the entire sequence of the time history [P( 0),

P( 1), .... P( N), not just one element. So, a sequential

algorithm is suggested.

To begin this development, a general discrete approxi-

mation of Eq (27) can be written as

n n
P( n) = Z 0(n,i)G(i)Q(i,j)G Tj)DT(n,j)•i=o j=0

0t it At i sn(ij) (30)

where

1) At1 and At are time intervals associated with the

i-th and j-th data points.

2) sn(i, j) is a discrete weighting function which

depends on the index n. A different function Sn(.,.) willn

be defined for each integration rule.

Note that for proper weighting

n n
Z Z Sn (i,j) Ati Atj = (tn-to)2  (33)
i=O j=0

The simplest choices for sn functions correspond to

rectangular and trapezoidal integration rules. Others

can certainly be developed, but these simple rules will

yield the least cumbersome recursion relationships. The

improvements from rectangular-t trapezoidal will give

insight into the incentive for higher order development.

3.2.1 Rectangular Integration Approximation Algorithm

The rectangular integration approximation gives

equal weighting to all evaluation points. The formulation

here is a slight modification of the usual rectangular

rule, but the essential character of the method is retained.
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In one dimensional integration approximation, the integral

is calculated using n integration steps and n integrand

evaluations. In the following development n+1 integrand

evaluations are assumed to bracket the integration inter-

val. Each integrand evaluation in the finite sum is

r.djusted by a weighting factor of n/n+l to account foo

this change. In this subsection, this simple one-dimensional

integral approximation rule will be extended to two dimen-

sional (double) integrals. This rule will be interpreted

with (30) to form a recursion which yields the sequence

P( i)3.

The one-dimensional weighting of integrand evalua-

tions can be expressed as a sequence of functions. The

generic element is defined for n > 1 by

0 i<0 ori>n

6n(i) = (34)

1 0<i<n

This sequence weighting function gives the weight assigned

to the i-th integrand evaluation for i = 0,1,2, ... , n.

The extension to two dimensions is simply

S n(i,j) = 6ni) 6 n(j)

2
n 2 for both 0<i<n and 0<j<n
nl -- (35)

.0 otherwise

n n
Note that=0 j= Sn(i~j) = n2  so this constant weighting

i=0 j=0 ~i
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n
will satisfy (33) as long as iO Ati = t n - to. A con-

stant step size was used in this work with Ati = At =

(tn-to)/n for 0 < i < n. A more general variable step

size approach might prove more efficient on missions with

a wide range of dynamics. This generalization is not

required for the verifications and demonstrations of this

work, but a suggestion for future research along this line

is given in Section XI.

With sn(i,j) defined by (35), the direct approximation

of (27) could proceed according to (30) for each value of

n. A recursion is more efficient when a sequence of answers

is desired. The solution of the homogeneous form of (27)

is well-known [Ref 15: Equation (4-114) on page 165 with

Q(T) = 0]. With some algebraic manipulations, the term,

(D(n,n-l) P(n-l) @T(n,n-1), appears within the P(n) summa-

tion and forms the basis for the recursive relationship.

To develop this recursive relationship, write (30)

as

P(n) = S1 + S2 + S3 + S4  (36)

where
n-1 n-iS 1  7 Y, (n,i)G(i)Q(i,j)GT ) (n,j) At, AtjiSn(i~ j )

i=o j=0
(37)n-i1

S2  =0 Z1(n,n)G(n)Q(n,j)GTU)OT(n j) Atn At sn(n,j)j=0

(38)
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n-iZ 0(n,i)G(i)Q(i,n)GT(n)T(n,n) At i AtnSn(i,n)

i=o
(39)

S4 = 0(n,n)G(n)Q(n,n)GT (n)OT(n,n) At
2 sn(n,n) (40)

Some obvious simplifications can be made since 0(n,nl = I.

A decomposition of (37) should yield P(n-l), and the fac-

tored form is obtained using

D(ni) = D(n,n-l)4(n-/,i) (41)

which yields

en-i n-i T T
S d(n,n-l)t 2 2 D(n-l,i)G(i)Q(i,j)G (j)D (n-l,j)1i=0 j=o

At i At) T(n, n - l )

(42)

Note that the indices of summation in (42) are such that

Sn-l(ij) is (n-1)2/n2 throughout the ranges. Since

sn(i, j ) is n2/(n+l)2, a replacement can be made using

4
Sn(ij) (n 2_l)2 Sn-l(ij) (43)

for both 0 < i < n-i and 0 < j < n-. With this relation-

ship

n4 fn-I n-i
S = n2 2  D(n,n-1) 2 Z 0(n-l,i)G(i)Q(i,j)GT(j)

(n2  i=0 j=0
-T(n-l'J) Ati At1Sn-l)il D0 T(n)n-l)

'j nIj

• n4_) Vn, n-1) P(n-l)OT(n,n-l) (44)

(n 2 _1) 2

The homogeneous solution is, in this case, modified by a

factor which reflects the change in weighting from tn_1 to

the tn evaluation point. S2 , S3, and S4 represent the
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change in P over the tn I to tn interval due to new dis-

turbances entering the problem. In that sense, S2, S 3,

and S4 represent the current time effects while S1 repre-

sents the past time effects. This type of interpretation

is important later in applying these algorithms to more

complex trajectory and correlation models than those which

follow in this section.

Equation (44) establishes the basic recursive rela-

tionship with (36). Some additional interpretations will

ease the computational burdens associated with S2 and S3 .

First, from the definition of Q, (28), it should be clear

that

Q(ij) = QT(ji) (45)

Using this relationship, it follows that

S s (46)S3  2
This relationship affords a considerable computational

savings since these summations are the major part of the

calculations required on each recursion.

These "current time" contributors to P(n) have a strong

similarity to the D function of Nested Integrals, (29).

At this point, the S2 and S4 terms will be redefined in a

* Iway which will enhance one's appreciation of the likeness.

71 Define n-1 TT

a n) = S2 = G(n) T Q(n,i)GT(i) (ni) Atn iSn (n,i)

Db(n) =S4 G(n)Q(n,n)GT (n) At2sn(n,n) (48)

b. () =
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Now, equation (41) can be restated as

P(n) (n2 -) 2  (n,n-l)P(n-l)0(n,n-1) + D (n) + D (n)
(2_ 2 a a

+ DOb(n) (491

The recursion is defined by (47), (48), and (49), but the

summation of (47) must be properly interpreted to yield

the reverse chronological form. To make this point expli-

cit,
n T T

Da(n) = G(n) Z Q(n,n-i)G (n-i)O (n,n-i) 'tn Atn i~n(n,n-i)i=l
(47a)

Summing in the order prescribed by (4 7a) requires 0(n,n-1),

0(n,n-2), ... , 0(n,l), and V(n,O) in that order. This

arrangement allows the data logistics economies discussed

in subsection 3.1. Figure 8 presents the algorithmic

structure which executes the summation of (4 7a). Note that

at the top of the DO loop the local variable DTemp = D(n,j),

and note that the multiplication at the bottom of the loop

requires only D(j,j-l) as new data. Since there is no

0(0,-l), the ro evaluation point is treated separately. The

READ operations should not be taken literally. Recall

that several data sets may be packed in one record; therefore,

READ means "locate" which may or may not require an actual

READ operation. The sequential data retrieval within the

loop is initialized by the r(n) data retrieve upon entry

to the algorithm. Again, these data handling techniques

are not the only solution, but algorithms formed in this

manner allowed this work to proceed.
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DO i l ,n-1

j = n-

READ r(j), D(j,j-l),G(j), Lt.

CALL QMAT
input: r(n),r(j)

( output: Q Qn,j)

DD +G(n)QG T j) DT At At s (n, j)a Da. Temp n jn

Temp = OTemp c0(jl-1)

CALL QMAT
input: r(n),r(O)
output: Q Qn,O)

Da D a+G(fl)QG T(O)ITem At~ Atosn (n,o)

Exit

Figure 8. Rectangular Algorithm D(n) Computation
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The recursion of (49) applies for n > 2 because of the

obvious singularity at n=l. Since P(O) is identically

zero by previous assumptions, one might make the mistake

of using the last three terms of (49) to produce P(l).

4 This would neglect the Db(0) term which occurs in (30)

evaluated for n=l. This term adds the effects of disturb-

ances near the start of the mission. The first step, then,

can be calculated by executing (30) for n=l.

P(l) = 0(1,0)Db(O)0T(1,O) + Da(1) + Da (1) + Db(1)
(50)

The algorithm is completely defined by (4 7a), (48),

and (49) for the recursion and by (47a), (48), and (50)

for the first step. The algorithmic procedure is straight-

forward except for the D (n) computation shown in Figure 8.

For each iteration after ti, Da(n) and Db(n) are computed.

Then, P(n) is computed by (49) using the (n,n-1) which

is on file.

3.2.2 Trapezoidal Integration Approximation Algorithm

The Trapezoidal algorithm will next be developed in a

manner similar to the Rectangular development. First, a

weighting function will be specified, and then, recursion

and initialization relationships will be formed.

The weighting function for one-dimensional integra-

tion approximation by the trapezoidal rule is

0 i < 0 or i > n

6n(i) = i = 0 or i n (51)
1 i n-i
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Extending this to two dimensions, define

S n(i,j) = 6 n(i)6 n (j)

0 (i,j) 4 (i<O or j<0 or i>n or i>n)

sn(iij) = (i,j) e L(O,O),(O,n),(n,O),(n,n)J

2 (i.j) c [ (0 ,k) ,(k, 0) ,(n, k) ,(k, n) 9 l<k<n-l]

1 (i,j) 3 (1 < i < n-i and 1 < j < n-i)

(52)

The rule expressed by (51) applies to equal subintervals

[Ref 16:144] which will apply in the analyses following.

This form can be used for non-uniform step sizes but care

must be taken to satisfy the constraint of (33).

An alternative for nonuniform step sizes is to give

unity weighting to all integrand evaluations and to com-

pute step size as a function of n by

.(t I  to  02 00

ti(n ) ={(ti+l-ti n-1 (53)
112t n - tnI i = n

For this development s (i,j) is retained since it aids the

n

development of a recursive relationship.

In the development of the Rectangular recursion, use

was made of the constant ratio between sn(ij) and

sn 1 (ij) over a restricted range of (i,j). In the

Trapezoidal case, a similar useful property exists only

this time it is the difference of the two weighting func-

tions. Note that s n(i,j) - Sn l(ij ) is zero except for

the cases of either i or j equal to either n or n-l.
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n+1 0 0 0 . . . 0 0 0 0

n i 1 0

n-i .• • • 3/4 0 0

n-2 0 0 0 . . . 0 0

2 2 0

2 0 0 0 . . . 0 0
I I 0

1 0 0 0 . .. 0 0

o 0 0 0 . .. 0 0 0

0 1 2 . . . n-2 n-i n n+1

Sn(iJ) - Snl(i"j)

The weighting functions are the same over indices ranging

from 0 to n-2. Over the range of 0 to n-2 of one index

with the other fixed at n-1, sn-l(ij) is exactly one-half

of sn(i,j). The n-i corner element shows a 4:1 ratio of

Sn(n-l,n-):snl(n-l,n-l). With these relationships in

mind, the summation of (30) is partitioned by

P(n) = S1 + S2 + S3 + S4 + S5 + S6 + S7  (54)

where for this Trapezoidal development the 0 to n-2 sub-

block gives

n-2 n-2
S1 = X, ( (n,i)g(i)Q(i,j)GTj) T(n,j) Ati AtjSn(ij)

i=o j1 (55)

The elements of the sum with n-i index in one position give
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*n- 2 T i)T
Sn2 Z 0(n,n-l)G(n-l)Q(n-l,i)G (i)DT(n,i) Ati Atn 1

= i=O
sn(n-l,i) (56)

Using (45) again the next term can be stated as

= S(57)s3  2T

And the (n-l,n-l) corner element is given by

S4 =(n,n-l)G(n-l)Q(n-l,n-l)GT(n-l)DT(n,n-l) At2

4 tn-i

sn(n-mn-i) (58)

The elements with n as the first index are included in
n-iT

S5 = Z 1(n,n)G(n)Q(n,i)G T(i)OT (n,i) At. AtnSn(n,i) (59)5 i=O 1

Using (45), the other n-index elements are given by

= sT (60)s6  5

The (n,n) corner element isT T, t2

S 7 =(n n)G(n)Q(n,n)GT(n)OT(n,n) Atsnn(n,n) (61)

The sn(n-l,i) of (56) can be replaced by 2snl(n-li)

using the relationship discussed previously. Similarly,

sn(n-l,n-l) in (58) can be replaced by 4sn-I(n-l,n-i).

Using these changes and factoring out O(n,n-l), yields

S1 + i s + IST + !S =(n,n-l)P(n-l) T(n,n-l) (62)

With this result, (54) can be restated as
P(n) = 0(n,n-l)P(n-l)& (n,n-l) + IS 2 + 2 + (3/4)S4

+ S5 + S + S7  (63)

With the definitions,
n-i T T

Da(n) S5 = Z G(n)Q(n,i)G (i)O (n,i) Ati Atn s n(ij)
io=0 (64)
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Db(n) = S = G(n)Q(nn)GT(n) At2 s (n,n) (65)b 7 fn

the following identifications can be made

= ¢((n,n-l)Da (n-l) T(nn-l) (66)s2 a

(3/4)S4 = 3(n,n-l)Db(n-l) T (n,n-l) (67)

Drawing all of these terms together yields the desired

recursion

P(n) = 0(n,n-l) [P(n-l) + Da(n-l) + DT(n-l) + 3D (n-l)ja a b
FT(n,n-l) + Da(n) + DT(n) + Db(n)

(68)

Again the main computational burden is the Da compu-

tation and the reverse chronological order is implemented

by
n T T

D (n) = Z G(n)Q(n,n-i)G (n-i)O (n,n-i) At At nsn(n,n-i)11 a i1n n-isn(6(64~a)

The Trapezoidal algorithm recursion is defined by (64a),

(65), and (68). The P(l) calculation of the Rectangular

method is used for the first step since for n=l the two

methods are equivalent. Figure 8 is a valid description

of the Trapezoidal algorithm except the past value of Da

must be saved.

3.3 Nested Integrals Approximation Algorithm

As an alternative to these two direct approximations

of (27), an algorithm based on the sequential solution of

two one-dimensional integrals is suggested. This nested

pir of integrals results when one takes the derivative of
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(2 with respect to time, t. The resulting algorithm is

similar to those in the direct integral approximations by

rectangular and trapezoidal rules. This new form permits

the use of powerful ordinary differential equation tech-

niques to produce the final result.

The first step in the development is an application

of Liebnitz' rule to (27):

t T

P(t) = G(t) ft Q(t,q) G (q)T (t,q)dq
0

+ St (tp)G(p)QEr(p),K(t)]dp GT(t) (69)

+ F(t) P(t) + P(t)F (t)

Defining!i t
D(t) S t Q(tp)GT(p) T(tp)dp 29b

and noting from (45) that

Q(tp) = QT(pt) (45a)

results in

P(t) = G(t)D(t) + DT(t)GT(t) + P(t)FT(t) + F(t)P(t) (19a)

The differential equation in (29a) together with its associ-

ated equation (29b) comprise the nested integrals pair.

To solve these equations, first, approximate a solu-

tion to (29b) for D(t) over the full span of mission time

for which P(t) is required. A completely new integral

occurs for each tn since r(t ) occurs as an argument ton n
Q(.,.) for te first time in the n-th integral of the

sequence.
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tn Q[rC(tn),r(p) ]G T(p)0 (tP) dp (70)

Since [D( 1),D( 2) D( N)3 must be produced, let the

approximation take the form of a simple quadrature formula.

Using the reverse chronological form,

n
D(n) = Q[E( n),r( n-i)GT( n-i)1T( n , n-i)

i=O

A tn i sn(n-i) (71)

One could develop sn(i) for an involved quadrature form.

To keep the computations simple, lower the time-step incre-

ments to reduce integral approximation error to an accept-

able level. So, define

10

i=o

s n (i) = 1 1 < i < n-l *(72)

2I i =n

corresponding to trapezoidal integration. Then evaluating

(71) for n=1,2, ..., N will yield a sequence [D( O),D( 1),

... , D(N )I which can be used in solving (29a).

One can treat (29a) with a multitude of ordinary

differential equation methods. For the following numeri-

cal examples, a predictor-corrector [Ref 14] was employed,

* As previously discussed, this weighting could also be
viewed as an alteration or redefinition of Ati. The form

presented here makes such weighting explicit for clarity.
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* because P is a function of P. Since evaluations of (29b)

are required at points other than Lt0 ,tl, ..., tN), a

simple linear interpolator was used on D(t), F(t), and

G(t). The overall Nested Integrals algorithm is a hybrid

integration method using trapezoidal quadrature for D(t)

and predictor-corrector methods for P(t).

Here, one should note that the Nested Integrals algo-

rithm requires F(t) data explicitly, whereas the direct

integral approximations did not. The data flow is some-

what altered by this need. The flow, including the indexed

sequential file step (subsection 3.1), is diagrammed in

Figure 9. The D(n) computation is quite similar to the

Da(n) computation portrayed in Figure 8. Obvious changes

are the (n,n) point and the deletion of G(n) and Atn terms.

3.4 Comparison Rationale

One can speculate about the relative merits of these

three algorithms: Rectangular, Trapezoidal, and Nested

Integrals. The spatial spectrum of the anomalous gravity

correlation functions and the temporal spectrum of the

inertial navigation error propagation are the principal

concerns in selecting step size for any method. Nevertheless,

all three methods are expected [Ref 17:382-384] to yield

* The specific predictor-corrector was variable-order,
variable-step-size Adams-Pecce algorithm described in Ref
14. Other predictor-corrector formulations of comparable
order should give comparable results.
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acceptable accuracy when both the products of ti with

F(t) eigenvalues are small compared to 1 and lr(ti) -

r(ti_l) l is small compared to correlation distances in

Q(.,.). The Trapezoidal algorithm should be somewhat more

accurate than the Rectangular, because a higher order

interpolating polynomial represents the function between

evaluation points.* The amount of improvement here will

indicate the productivity of more complex direct approxi-

mations. The predictor-corrector P(t) computation in the

Nested Integrals algorithm should give an accuracy advan-

tage but will undoubtedly cost in computer storage and

execution time.

Accuracy and efficiency will be used to select one

of the alternatives for further development and study.

To quantify the differences for this selection, a simple

test case is proposed. This example should be in the form

of the problem type that these algorithms are intended to

solve, but it should be simple enough for an indisputable

comparison to the true solution.

3.5 Undamped Schuler Loop Driven by Exponentially Correlated

Noise

A simple model of an inertial system horizontal channel

is the Schuler loop. In its purest form, this model is an

* Hildebrand[ Ref 18 :93-94] has shown that for interpo-
lating functions of order 2n and 2n+l the approximation
error is bounded by a term involving A t21+3 .
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undamped, second-order feedback loop. The feedback signal

represents, to first order, the corrective influence of

the gravity model, given position errors [Ref 2 : Appendix

B]. The feedback weighting is the squared Schuler fre-

2 g
quency, s R

e

6g(t) + dt v(t) dt [ T.x(t)

T YL
As diagrammed above, this loop is driven by the gravity

model error term 6g which corresponds to the vertical

deflection in the +x direction multiplied by g.

This double integration with negative feedback forms

a pure oscillator with fundamental frequency W.

Defining state variables as integrator outputs yields

{ 2:}1 f + { 6g (73)

For the algorithms, identify

F(t) = F = [ s (74)

G(t) = G = [0] (75)

x=r6xy (76)
6v0

u= f~g) (77)
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From (74), one can derive

cOsw (t-P) i sinw (t-p)10( tp) =O(t-p) s Ws (78)

-s sins (t-P) cosws(t-P)

Levine and Gelb [Ref 11] suggest a simple exponential

correlation for such a 6g. The correlation is spatial

since the gravity model error is a s atial function.
Ix x2-xl!

d

o[6g(xl) 6g(x2)] = a2 e (79)

where a2 is the variance and d is the correlation distance.

From (79), form the required gravity correlation func-

tion Ix(t2) -x(tl) I
d

QEr(t9r(t2)I = Q[x(tl),x(t2)] e= 2e (80)

Only the design mission remains to be specified.

Again, simplicity is desired, so a constant velocity trajec-

tory is selected

x(t) = V • t (81)

Now,

Ix(t2)-x(tl)1I V •t 2-tl (82)

in (80) above. For the numerical example, data is specified

by Table II. These data correspond to values for horizontal

gravity modeling errors [Ref 12] and a bomber cruise mis-

sion. The intent i.s to form only a representative case,

so precision in these data is not an issue.
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Table II

Schuler Cases Data

Quantity Symbol Value, Units

Initial time to 0 sec

4 Velocity V 615 ft/sec

Disturbance Variance* 2Y 1273 (mgal)2

Correlation Distance d 20 n m

Schuler Frequency 1.24xi0-3 rad

B sec

* Corresponds to a 36 pg root-mean-square which

is equivalent to 7.5 arc sec rms.

1 mgal = 10-3 cm/sec2 = 10-5 m/sec2

3.5.1 Closed Form Solution

The information to perform the integral approxima-

tions is now completely specified. Now P(t) must be pro-

duced in closed form to study and compare algorithm errors.

The problem can be solved using a straightforward

approach based on stochastic linear system theory. The

model for gravity error, 6g, is the output of a linear

filter driven by white, gaussian noise. The block diagram

* below shows the basic relationship between the noise qx(x)

and the disturbance 6gx(x).

• qx) + _% 6g__ W gxx

1
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where

(~qx(Xl)qx(X) = - 2 6(x2-x I ) (83)

Also, the filter is modeled at steady state,

e[Lgx()23 = 72  (84)

This spatial model is converted to temporal by the velocity.

Simply replace dx by V-dt, and the block diagram can be

converted to

with

(85)

The noise process satisfies

I[q(tl)q(t 2 )] = 21a 2 d(t 2 tl) (86)

Combining the Schuler loop with this model yields one

linear system driven by q(t). An augmented state equation

can now be formed

0 11 01 6 + 0o
___ -_ _ 0 1 6v_ q (t) (87)

Xa(t), Fa, and Ga are given by (7) through (10). Then,

Pa (t) = FaPa(t) + Pa(t) FT + GaQgGa T  (14)

where Q comes from (6) as

Q ; [28 o2] (88)
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Def ine

[p11  P 1 2  p 131
~a 12 P22  (89

p 1 23 3,

2 and note that

0 0 01
(0) 0 0 01 (90)

Now define

(h 5/ (91)

A= 2+W 2 (92)

Then solving (14) yields

P1 1 (t) = Aht [h sin2w t+1 cos2(o t] +
WS 2wss s

2AWis1-e- t(h sinwst + cosWst)]} (93)

P12(t) = WS s es swt}(4

p 2 2 t =
2A(I5t + 1(hsinw t - cos2w ti-i) -

2awsrA~h+e-5t(sinw s t - h coSt)]j

p 1 3 (t) = G2A(1-e-OtLcoswst + h sin,~t]) (96)

P 2 3 (t) = or2 Af(+eOttEf coswd t + W s sinwt]3 (97)

p 3 3 (t) = ay2  (98)
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Now (93), (94), and (95 ) give the true answers against

which the algorithms' performance can be judged. Note

that the position and velocity variance terms have ramp

components. The results ( 96) and (97 ), incidentally,

give the correlation of position and velocity errors with

present gravity error. Equation (98) merely confirms the

problem specification in (84).

3.5.2 Numerical Comparisons

Trapezoidal and Rectangular algorithm solutions were

formed using (75), (78), (80), and (81). The Nested

Integrals algorithm also required (74). For each of the

three methods, a fixed integration step size was used

throughout an analysis case. Six different integration

step size cases were considered: 3.75, 7.5, 15, 30, 60,

and 120 seconds. The errors in P(t) elements for each

of these 18 cases are plotted against a common scale for

comparisons. The position and velocity variance results

are presented in Figures C-1 through C-6 . The position-

velocity covariance results are presented in Figures C-7

through C-9. All of these graphical results are located

in Appendix C. These graphs verify that each approxima-

tion technique is accurate, given a small enough integra-

tion step size, At. The variance approximation errors

grow with time, but the variances being approximated have

ramp terms as seen in (93) and (95) above. A better
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perspective is gained if these errors are expressed in a

percent of the true value. The results for percent posi-

tion variance error are presented in Figures C-10, C-il,

and C-12 for the three candidate methods. The only signi-

ficant errors, from a practical viewpoint, are the initial-

ization errors associated with the Rectangular and Trapezoidal

algorithms. The absolute error may grow, but the percent

errors fall to clearly acceptable levels for small At.

Obviously, for all methods, some catastrophic failure

awaits the unwary user who increases At beyond the largest

value (120 seconds) used in this study. The explanation

is found in applying Shannon's sampling theorem to the

choice of integration step size, and a digression on this

point is needed before the accuracy comparison is con-

ducted.

Shannon's sampling theorem dictates that -t be at

least twice the highest frequency [Ref 15t295] which

affects the integrand of (27). This integrand is affected

by the error propagation model, the trajectory, and the

correlation function. The trajectory is not reflected

in the simple error propagation model, but it affects the

correlation function through its arguments. The frequency

characteristics of the propagation model and of the trajec-

tory-driven error of propagation function should therefore

be investigated.

The Schuler loop of this example acts as a low pass

filter to the gravity disturbance input. The filter

76
t.



dynamics are adequately modeled when At is less than one-

tenth the Schuler period. This imposes the constraint that

integration step size be less than 8.4 minutes - clearly

met by all values of At considered. The input correlation

function then, must, be the key to the problem for the

greater At values.

The correlation function iL; spatial, but, as seen,

velocity converts this process into the time domain. The

correlation time,

t l d/V, (99)

*is 198 seconds in this case. Adequate sampling dictates

that At be less than 99 seconds ( t ), and common prac-
c

tice [Ref 15:295] indicates one should select At as low as

20 seconds (tc/10). A 99-second step size corresponds toc
4.7 or the logarithmic integration step size scale in

Figures C-1 through C-12, and a 20-second step size corre-

sponds to 2.4. The sampling theorem violation for the

120-second (5 on the logarithmic scale) case explains the

significant increase in error for that case. The 60

second (4 on the logarithmic scale) case is near this

violation. The results for 60 seconds and 120 seconds,

therefore, do not represent the algorithm performance and

should be eliminated prior to comparing the results for

the three alternative algorithms.
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The results for position and velocity variance error

were replotted, then, for the four lowest integration step

sizes. These results are shown in composite form in

Figures C-13 and C-14. This format facilitates the direct

comparison of approximation results.

Schuler rate undulations stand out in the Rectangular

algorithm results. The lack of predominant Schuler rate

errors in the Nested Integrals and Trapezoidal must be

attributed to the higher order representation of the inte-

grand. Recall that Nested Integrals has a trapezoidal rule

approximation for D(t), so the similarity of these results

is not so surprising. The generally lower and less per-

turbed Nested Integrals and Trapezoidal computation error

gives these methods a decided edge over the Rectangular

alternative. The Trapezoidal maximum error (sup norm)

in velocity variance is slightly lower than Nested Integrals.

The Nested Integrals is slightly better in the position

* variance calculation by the same judgment criteria.

Accuracy is not the only concern. The computational

burden should also be considered in the final selection.

The input-output computer costs were practically the same

for all three methods. The computer memory required for

Nested Integrals was only 2000 words more than the alter-

natives, which is not a major consideration. The computa- ).
tion time did vary, and these times, normalized to the

smallest value, are given in Table III.
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Table III

Normalized Computation Time

at NESTED

SEC RECTANGULAR TRAPEZOIDAL INTEGRALS

3.75 1485 1556 449
7.5 370 387 114

15. 94 100 29

30. 24 25 8

60. 6.3 6.5 2.4

j 120. 1.9 1.9 1.0

Note that for all three methods, halving the integra-

I tion step size doubles the number of points, and increases

the computation time by approximately 22. This reflects

the underlying two-dimenstional integration which is

being approximated.

The surprising result of the computation time compari-

son is that the Nested Integral method is more efficient

than the other methods by a ratio of almost three to one.

The Nested Integrals method is more efficient than

either the Rectangular or the Trapezoidal method. The

Nested Integrals results were as accurate as the Trapezoidal

results and substantially superior to the Rectangular

results. Based on these accuracy and efficiency compari-

sons, the Nested Integrals method was selected for further

development and study.
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A trapezoidal integration approximation rule limits

the accuracy of both the Nested Integrals and Trapezoidal

algorithms. An accuracy improvement is anticipated in

either case if the integration is approximated using

Simpson's rule. [Ref 18:93-9J The classical debate of

whether to decrease step size or increase integration order

can be raised. For the problem considered here and prob-

ably for other more complex navigation scenarios, the

sampling theorem compels the selection of step size.

Even though a substantial improvement is obtained when the

rectangular rule is replaced by the trapezoidal, the

trapezoidal algorithm leaves little error to improve on

when integration step size is well below the Shannon rate.

For this reason, an extension to Simpson's rule for the

IJ D(t) computation in the Nested Integrals algorithm was

! not made. The trapezoidal rule D(t) approximation is the

A basis for the Nested Integrals results presented in the

following sections.

3.6 Damped Schuler Case

The previous undamped Schuler loop example, however,

leaves something to be desired in terms of giving insight

into practical problems. In this test case, the variance

being approximated grew with time; therefore, the absolute

error could also grow with time while the percent error

fell. In a practical case, the Schuler loop would
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probably be damped by measurements. The question, then,

is whether or not the Nested Integrals method still gives

valid results when the system is damped.

To answer this question, two chages are made in the

problem formulation. First, a damping term corresponding

to continuous velocity measurement and feedback is added

to the Schuler Loop model

6g( t) _ +  ()" i x(t)

-l-4

where C is the damping factor. For this numerical example,

C is set to 0.3, which corresponds to an underdamped system.

The F matrix

F 0[s2 -2 s  (100)

yields a state transition matrix

(tp)=-{ (t-p) [(coswt+Cv sinwt) (_isinwt)

(-Ws v sinwt) (coswt-{ v sinwt)J

,* (i01)
where

W B C i- 2  V =i%

* 81
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Second the gravity disturbance model is increased in

complexity by forming a second-order filter. This gravity

disturbance yeilds a more realistic correlation function.

The two-state correlation is rounded, as empirical data

reflects, at zero shift rather than peaked at zero shift

as is the correlation for the previous one-state model.

The second order, stochastic model for gravity disturbance

q (x) + + g(x)

gives an autocorrelation function

Ix 2-xl I

4g[6g(x 1 )6g(x 2 )J = d 1 + - ) (102)

The parameter d is no longer the distance at which corre-

lation is l/e of the zero shift value. The term "corre-

lation distance" of Table II should be loosely interpreted

for this case. Applying (82) and (86) yields

2~-,t2_tl, (

Qcr(tl),E(t2 )I = C2e (l+P3t 2 -t1l) (103)

Constant velocity is again used to convert the spatial

correlation model to temporal:

q(t)---+- y ---- -dt 6g(t)
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Let

P (t) y6g y 2 I 12 202 aj (104)
40 [,g2 g Y ] 2 ,j2]

for filter at steady state.

An augmented system can again be formed to yield a

system for which a closed-form solution is possible. Let

a =2f v- (105)

Then

0 0 0

L20 0 0 -0

(106)

Let Fa and Ga be defined from (106), then (14) is again

valid. Now,

Qg = [4032 (107)

and from (67)

Sa0 0 0 0 0
(008

Pa(O)=O 2 [0 0 0 ) (108)
0 1
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For numerical results, the data of TableII was again used

along with the 0.3 value for C.

Theoretically, (14) can be solved in closed form

using (106), (107), and (108). For this example, however,

the true solution was found by solving (14) using a predictor-

corrector integration algorithm [Ref 141.

Using (100), (101), (103), and (75), the Nested

Integrals results for position and velocity varianze were

produced (Figures D-1 through D-4). Figures for the Damped

Schuler case are located in Appendix D. Since these

approximation results were generally more accurate than for

the undamped case, an additional integration step size

case with At of 240 seconds (6 on the logarithmic scale)

was also included. The approximation algorithm apparently

does solve (29) for the damped Schuler case in a satisfac-

tory manner. The percent position variance error (Figure

D-3) would be acceptable for most practical situations,

and the fact that this error stabilizes and does not grow

is reassuring. The percentage results for the undamped

Schuler case, therefore, were not dependent on the pres-

ence of a ramp term in the variance solutions.

3.7 Conclusions from Schuler loop Cases

Three alternate algorithms were produced which demon-

strated the ability to solve the covariance integral. Each

method had acceptable small error in calculating P(t)
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given small enough integration step size At. The Trapezoidal

algorithm was more accurate than the Rectangular algorithm.

The improvement was not sufficient to warrant developing

even higher order integration algorithms. On the other

hand, the Nested Integrals algorithm is superior to

Trapezoidal in computation efficiency and roughly equiva-

lent in accuracy. The Nested Integrals approach was

selected for further development and study.

The undamped Schuler loop used in this method's

comparison left some doubt. A damped Schuler loop case

was conducted with Nested Integrals to demonstrate that

the results did not depend on the undamped model insta-

bility. The results in both of these Schuler loop cases

verify that the Nested Integrals concept is a valid means

of producing navigation error covariances.

The total navaigation system error propagation in-

cludes more than g Schuler loop, and the gravity disturb-

ance is also multidimensional. A more realistic verifi-

cation is required, then, to demonstrate the performance

with a complete navigation system model.

4,.
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IV. Nested Integrals Versus Linear State Space

Covariance Analysis

In the last two sections, a new covariance analysis

algorithm, Nested Integrals, was developed and demonstrated.

The demonstrations of Section III were one-dimensional.

In this section, an analysis of a complete navigation

system is presented to verify further the validity of this

method. As in the Schuler loop cases, the demonstration

will be compared to a linear state space covariance result.

Since Nested Integrals represents an alternative to the

linear state space covariance analysis, it is instructive

to demonstrate not only where the methods agree, b"t also

where they yield different answers. This section presents

both the full-scale verification and the point of departure

by comparing Nested Integrals results to those produced

by linear state space methods on a range of trajectories.

The full-scale verification is performed using a

great circle trajectory. On this trajectory, the linear

state space covariance analysis theoretically yields the

correct result, and Nested Integrals answers are compared

to those results as further proof of this new method. Two

minor circle trajectories re, next, selected to violate

the linear state space method's restrictions. The Nested

Integrals method properly accounts for correlations in these

minor circle instances, and these results should, therefore,

be valid. So the difference between the two methods will
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be the error induced in linear ptate space covariance

analysis on the non-great circle trajectories. This para-

metric study gives insight into the extent of mission

trajectories for which linear state space results might

be acceptable.

To conduct these studies, models for the trajectories

mentioned must be formed. Also, a full-scale gravity dis-

turbance model which can be cast in a linear state space

format must be defined. With a definition of the naviga-

tion error propagation model, then, the study can begin.

4.1 Modeling Choices

The model requirements for both types of analysis are

similar. The form in which the gravity-disturbance statis-

tical model enters the analysis is the principal difference.

The details of the navigation error propagation, gravity

disturbance, and trajectory models are provided in Appendices

E throrugh H. The following brief descriptions provide

additional background and model interface detail.

These details come into focus when the needs of the

two analyses are reviewed. Looking first at the linear

state space covariance analysis, recall the structure of

this method from Section IIt

The error propagation model is in the formj

(t) = F(t)x(t) + G(t)u(t) (3)

The gravity disturbance is modeled as a Gauss-Markov

process by
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I
x (t) = F (t)A (t) + G (t)q(t) (4)

The disturbance input to the navigation errors is

u(t) = C (t~xg(t) (5)
£

subject to,

E°q(t)q T (p)] = Q (t)6(t-p) (6)
g

The augmented state is defined by

-a t) 7

so,

ja(t) = Fa(t)xa(t) + Ga(t)q(t) (8)

where

Fa(t)= ...... 1.... . 9)

0 .' F (t)

and

Ga(t) ...... (10)

The covariance of the augmented state satisfies

at) = Fa(t)Pa(t)+Pa(t)FT(t)+Ga(t)Qg(t)GT(t) (14)

Solving (14) yields the linear state space results

The state x and x must be defined and then the com-

ponents of each associated model given. The navigation

error propagation model of (3 ), for this study, is that

of Widnall and Grundy [Ref 9 :26-27]. The vertical channel
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is modified to represent a stable system based on altimeter

aiding as suggested by Britting [Ref 8.]. The navigation

error state vector of the Widnall-Grundy model has nine

elements

xl(t)

xt) (109)f

x(t)

which are def4*.d as follows:

Ix is 6X, error in longitude

x2 is 60, error in latitude

x is 6h, error in altitude

x4 is 6v e , error in east earth-relative velocity

x 5 is 6v error in north velocity

x1 is 6v z , error in vertical velocity

x 7 is Ee , orientation error about the east axis

(local level)

x8 is En , orientation error about the north axis

(local level)

x is E z , orientation error about the vertical axis.

The modified Widnall-Grundy F-matrix for (3 ) is

provided in Appendix E. Consistent with the east-north-

vertical coordinate frame of the navigation error states,

the gravity disturbance is defined

F6g e(t)
uHt) e 6gn(t) b gn(t) (110)

6g (t)
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where the n superscript indicates the physical vector is

mathematically represented in n-frame (east-north-vertical

or "navigation" frame) coordinates. These 6gn terms drive

the respective 6 n terms in (3).

where the partitions are each 3X3 matrices.

Since a linear state space covariance analysis is to

be performed, a statistical model for gravity disturbances

in the form of (4 ) must be provided. To complement the

full-scale navigation error model, an eight-state gravity

disturbance model is selected [Ref 19]. This linear

shaping filter has been the subject of much research [Ref

12] aimed at producing a model which replicates empirically

derived anomaly correlations and which yields auto- and

cross-correlations of other disturbance terms consistent

with gravitational field theory. The filter can be viewed

as three separate linear systems each driven by an element

of q. Stationary statistics were assumed in the model

development [Ref 19], so the noise strength Q is constant.

A linear combination of the filter states, x elements,

form gravimetric deflections and anomaly. The details of

the C (t) output matrix of (5 ) along with the F and Gg

matrices of (4 ) are provided in Appendix F. Q is also

described in Appendix F.
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With these elements of the analysis defined, the Fa

and Ga can be formed. Thus, Pa can be evaluated by (14)

and numerical solutions for Pa attained.

The initial condition must be supplied to start the

solution process. Even though the navigation error covari-

ance is zero initially, the augmented state covariance is

non-zero, because the modeled gravity process is assumed

to be stationary, hence must be initialized in its steady

state condition. To model this in-process situation, the

gravity disturbance covariance is assumed to be at steady

state P This initial condition leads to

Pa(to) =[: j(112)
where the zero matrices are of required dimension. The P

initial condition for the gravity disturbance state's

covariance is specified in Appendix F.

Now, turning to the Nested Integrals analysis, the

pertinent equations from Section II are:

x(t) = F(t)x(t) + G(t)u(t) (3)

From (28),

i. Q(p,q) & (2 (p) IT (q)] (28a)

From (16),

t,t i ) = F(t)cZ(t,ti) (16a)

for t > ti , and with initial condition 0(ti,ti) = I.
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P(t) = G(t)D(t) + DT(t)GT(t)+P(t)FT(t)+F(t)P(t) (29a)

D(t) = St0 Q(t,p)GT t,p)dp (29b)

Solving (29) yields the Nested Integrals result.

F(t), G(t), and u(t) are described above. The Q(p,q)

correlation matrix function is the form of the gravity

disturbance statistical model for Nested Integrals.

Q(p,q) is formed from the same model used in linear

state space analysis. Equation (4 ) for the linear state

space method is the temporal form of a spatial statistical

process (see Appendix B). The correlations of x are

solved in this spatial domain and the output matrix of

( 5) applied to yield the elements of Q(p,q). This matrix

function is provided in Appendix F with the method for

producing the central angle and heading associated with the

r(p) - 1(q) pair.

Solution of (29) can commence with the specification

of zero initial condition for P(t) as discussed in Section

II.

The linear state space and Nested Integrals analyses

described above need a trajectory model to evaluate F(t),

C (t), Qg, P 9'F , and Q(p,q). The great circle trajectory

is described in Appendix G and the minor circle trajectory

" in Appendix H. A constant altitude profile is modeled for

both the great circle and minor circle trajectories. This

flight path avoids upward continuing [Ref 13] the gravity

statistics. For convenience, the velocity is also held

?- 93
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constant at a value consistent with a bomber or transport

aircraft cruise. The algorithm generating the great circle

flight path (Appendix G) differs from the minor circle

(Appendix H) in that an inclination can be specified. The

inclination given in Table IV forces the great circle

path off a cardinal direction and, thus, insures that all

navigation channels are exercised in this study. The flights

are all modeled to occur in the same geographic area, so

minor circle results can be compared directly to great

circle results. With these trajectory models, the modeling

L structures for both the great circle and the minor circle

cases are set, and the studies themselves can be addressed.

4.2 Great Circle Case

The data required by the trajectory model of Appendix

G and the gravity disturbance statistical model for the

great circle case are given in Table IV , below. These

data will be used in several studies in Sections VI through

IX. Also, the minor circle trajectories will use the same

data set with two exceptions; inclination, i, is unused

and the initial circle angle, A o , has a different meaning

which is explained in Appendices G and H. The Nested

Integrals integration step size is also provided in Table

IV.

As proposed, both Nested Integrals and linear state

space covariance analyses are performed on the great circle

case. Since the trajectory does not violate the linear
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TABLE IV - Great Circle Case Data

Quantity Symbol Value Units

Final time tf 12240 seconds

Initial time to 0 seconds
Initial circle angle A0  0 degrees

Inclination anglel* i 45 degrees

Velocity magnitude* V 615 ft/sec

Earth radius R 20925640 fte

Altitude h 0 ft

Gravity magnitude g 32.174 ft/sec 2

Earth rotation rate 'Jie 7.2921.10-5  rad/sec
2 180(ea)2

Anomaly variance ag 1800 (mgal)

Correlation parameter d 20 n m

Nested Integrals step size At 30 sec

t Meaning varies. See Appendix G for great circle and
Appendix H for minor circle interpretations.

* Earth relative terms

Applies to great circle only.

state space constraints, those results should be correct

and offer a benchmark against which Nested Integrals per-

formance can be judged on this full-scale case. The

covariance results by both methods at 200 minutes into the

mission are provided in Table V. All 45 independent

elements of the covariance matrix are given in lower tri-
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angular format. Using the linear state space answers as

a base, the differences in the results are expressed in

percent in Table V. The largest difference between the

two methods at 200 minutes is only one-half of one

percent.

Table V gives assurance that all elements are being

calculated correctly at one time. Next, circular-error-

probable is calculated throughout the mission to demonstrate

that the solutions agree over all time. The circular-

error-probable (CEP) summarizes the horizontal position

covariances into one well-accepted figure of merit. This

statistic is calculated by an approximation for a multi-

dimensional normal distribution ERef 20]; the calculation

details are presented in Appendix I.

The circular-error-probable results for the great

circle case are displayed in Figure 10. Agreement between

the two analysis methods is so close that the curve markers

must be offset to clarify that two curves are plotted.

These results, together with Table V, clearly demonstrate

the validity of the Nested Integrals analysis on a full-

scale problem.

In this case, the results are equivalent, but Nested

Integrals required approximately three times the computa-

tion time as did linear state space. The input/output

time for Nested Integrals was nearly twice the computation

time because of the 21,012 file GET operations; whereas,
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the linear state space input/output time is virtually nil.

While no efforts were made to minimize computer resource

costs, it is clear that a substantial penalty is paid when

Nested Integrals is used in place of the linear state space

covariance analysis; therefore, the errors produced by

linear state space analysis on other than great circle

trajectories must be considered.

4.3 Minor Circle Cases

Precisely this consideration prompts the minor circle

trajectory study. The great circle case, viewed as a 3444

n m minor circle radius case, has shcwn exact comparisons

between Nested Integrals and linear state space covariance

analyses. Two other minor circle cases are proposed here

to scan parametrically the trajectory restriction. effects.

Minor circle cases are defined by the radius of the closed

flight path in a planar sense. The details of the minor

circle trajectory are provided in Appendix H. The para-

metric range should include trajectories for which linear

state space analysis is expected to err significantly.

Intuitively, one expects little error on cases where

the minor circle radius is much larger than the correlation

parameter. Of course, any trajectory that completes a

minor circle is expected to elicit some error when using

the linear state space method since the linear state space

modeling grossly misrepresents the correlations along such

a path. More pronounced effects should be observed on

II
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cases where the minor circle radius is of the same order

of magnitude as the correlation parameter. To cover this

range of effects, additional minor circle cases of 197 nm

and 20 nm radii are studied. The 197 nm case completes

exactly one circuit in the 204 minutes of simulated flight.

This radius is approximately five times the 20 nm correla-

tion parameter, so this case should represent a transition

to trajectories with significant errors. To evoke some

definite errors, the final trajectory is a relatively

tight turn of 20 nm radius. This radius equals the corre-

lation parameter, and this case completes nearly ten cir-

cuits during the 204-minute flight.

The parameteric scan of this study, then, includes

trajectories of 3444, of 197, and of 20 nm minor circle

radii. Before reviewing the covariance results, consider

the effect this set of trajectories has on central angle

and, therefore, on correlations. The central angle *(t,t 0 )

between r(to) and r(t) will serve as the example. For the

minor circle cases (see Appendix H for derivation),

t 2 rc[lcosC(tto)V/rc3] (W(tto 0 Co-i Re - (113)

e

where r c is minor circle radius as defined in Appendix H.

From (113), it follows that the great circle case, rc=Re,

yields

( = It-t01 V/rc  (114)
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subject to 0 < * < 1800. This central angle to the origi-

nal point is presented, for all three cases, in Figure 11.

With this example it is clear that only the great circle

case gives the same results for *(t2 ,tI ) + *(tlot o ) as

for *(t2 ,to) -- a matter discussed at the end of Section

II regarding the trajectory restriction.

This spatial variation is reflected in the correla-

tions of anomalous gravity terms. For illustration, con-

sider the correlation of anomaly at t0 with anomaly at t

throughout the flights. The model anomaly correlation

function for this study specifies that [Ref 19]

0gg(j) = [1 + M -
] e-M (115)

where

M = r */d (116)

and

r is position vector radius,

d is correlation parameter, and

2.G is anomaly variance.

All three quantities are defined and background on (115)

is given in Appendix F. The correlation of 6g(to) with

Ag(t) for all three minor circle cases are presented in

Figure 12. The strong effects of trajectory on correla-

tion are clear. On every complete circuit, the anomaly

correlation with the initial point becomes the anomaly

variance again. The linear state space covariance analysis

forces the great circle correlation rule regardless of
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trajectory and, hence, introduces error.

With this understanding of the underlying correla-

tion mismodeling, the results should come as no surprise.

The 3444 nm case results were presented previously in

Figure 10. The 197 nm case results are presented in Figure

13, and the 20 nm results are shown in Figure 14. The 197

nm case shows a close agreement between the two analysis

methods over the first half of the flight, as one would

expect from the apparent match between the great circle

and the 197 nm minor circle correlations shown in Figure 12.

The correlation curves diverge when the minor circle closes,

and a slight divergence is seen in the circular-error-

probable results toward the end of the 204-minute mission.

The results by linear state space on the 197 nm case

appear close enough to the current Nested Integrals results

for practical applications. The substantial computational

advantage of linear state space would motivate the accept-

ance of such minor errors on this mission.

The 20 nm circle results match well for one half of

the minor circle, again. In this case, however, the

correlation and circular-error-probable agreements lasts t

only one-twentieth the flight time. After that, the linear

state space covariance analysis result is drastically dif-

ferent from the correct Nested Integrals result. The two

results would give close to the same average circular-

error-probable; however, the peak values are substantially
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different. While the linear state space results for the

197 nm case may be acceptable as an approximation, the

results on the 20 nm case seem hopelessly wrong. Each

analyst would find his subjective threshold of tolerable

error somewhere in the span of minor circle radius. The

Nested Integrals approach makes visible now the error of

the linear state space covariance analysis.

Another insight afforded by Nested Integrals analysis

is the effect of the trajectory on navigation errors pre-

sented in Figure 15. The Nested Integrals results are

assumed to be correct due to the great circle verification.

A Monte Carlo verification of these minor circle results

was not performed since a more useful Monte Carlo verifi-

cation is given in Section V. The three Nested Integrals

results for the minor circle cases are plotted on the same

scale for comparison. Note that the higher correlations

on the smaller minor circles do not breed higher errors in

general. In the long run, the great circle special case

produces significantly higher errors.

4.4 Comparison Conclusions

The minor circle and great circle studies have proved

two points and have provided some insights not previously

available. First, the Nested Integrals algorithm is veri-

fied on a full-scale problem. Then, the potential error

of using linear state space covariance analysis is demon-

strated through trajectory variations out of the great
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circle restriction. This latter process gives insight into

how significant these errors might be and into when the

error level might be accepted in order to gain the greater

computational efficiency of linear state space methods.

Finally, a comparison of gravity-induced navigation errors

as a function of the trajectory is provided by the Nested

Integrals method. The results are interesting and provide

a view of issues not seen before. The fact that Nested

Integrals can correctly calculate these covariances in an

efficient manner is a prime aim of this research. A needed

alternative to the linear state space analysis trajectory

restrictions has been presented on a full-scale problem.
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V. Nested Integrals Versus Monte Carlo Analysis

The three statistical analyses discussed in Sections I

and II are linear state space covariance analysis, Monte

Carlo analysis, and covariance integral analysis. Nested

Integrals, as a covariance integral type of analysis, was

compared to linear state space analysis in Section IV.

The minor circle trajectories used in Section IV while

violating the linear state space restrictions still do not

exercise the full range of Nested Integrals capability.

Also, the question of whether this new method is more effi-

cient than Monte Carlo must be faced. For these reasons,

this section is devoted to a Nested Integrals to Monte

Carlo comparison on a complex trajectory. The vehicle for

this comparison is a recently completed Monte Carlo study

of an air-launched strategic missile mission [Ref 10].

Nested Integrals method is used on the same problem allowing

a direct comparison of results and computational costs.

The comparison of Nested Integrals to Monte Carlo

method is the primary motivation for this particular study,

but several other features are offered:

a. Complex trajectory. The strategic missile trajec-

tory is significantly different from the constant-groundspeed,

level-flight mission used in Section IV. While the missile

trajectory stays in a great circle plane the flight profile

has significant acceleration and altitude changes.

Groundspeed increases some 3285 ft/sec while altitude

ill
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changes almost 80,000 feet in the initial boost and climb

phases. Again, the trajectory flexibility required for

studies such as this is a prime motive for Nested Integrals

development.

b. Correlation model variation. The Monte Carlo
analysis employed a different statistical model [Ref 21]

than the previous linear state space model. For this com-

plex altitude profile, a statistical model must, and this

one does, give correlations at and between different alti-

tude levels which are consistent with the interrelation-

ships imposed by gravitational field theory (upward continu-

ation). The flexibility to use a variety of statistical

models is also one prime motive for the Nested Integrals

development.

c. Real-world problem. The problem addressed here

is not academic. Analyses of this type are typical of

the exercise performed in generating an error budget for a

proposed new system. In this sense, the air-launched

strategic missile represents a real-world problem on which

the Nested Integrals methods can be applied.

d. Independent verification. The author was the

Air Force study manager for the Monte Carlo analysis, but

the model selection and analysis were performed by the

contractor, a separate party. These published results

[Ref 10] offer an independent check on the newly developed

Nested 'Integrals method.
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The rationale for this comparison is to emulate the

Monte Carlo study as nearly as possible. The Monte Carlo

study is, therefore, discussed before the Nested Integrals

model selection. Finally, navigation accuracy results

are compared and computational costs are contrasted.

5.1 Advanced Strategic Air-launched Missile Problem

The problem is the medium through which Nested Integrals

is compared to Monte Carlo analysis. The genesis of the

problem was a system accuracy, error-budget exercise con-

ducted by Aeronautical Systems Division of the Air Force

Systems Command. Several trajectories were considered

in an elaborate trade-off of systems and flight strategies.

The linear state space covariance analysis approach

4is typically used for estimating the gravity model contri-

butions. This trajectory clearly violates the constant

altitude model restriction, and some analysis considering

upward continuation was desired. Geodynamics Corporation

was tasked in August, 1977 to perform an analysis which

would give the gravity model contribution to inertial navi-

gation errors on this complex mission. The results of that

* study are recorded in Reference lO dated August, 1978. Of

the studies included in that work, the 1500-nm missile

trajectory is selected as a case on which to apply Nested

Integrals analysis.
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5.2 Monte Carlo Study

The aspects of the Monte Carlo study which affect the

course of the Nested Integrals analysis are:

a. the trajectory,

b. the navigation simulation, and

c. the statistical model.

These categories, obviously, are the three models needed

for Nested Integrals analysis.

The trajectory used for the Monte Carlo study is

described on page 6 of ReferencelO. The necessary excerpts

from that description are presented in TableVI, below.

The Monte Carlo trajectory generator used acceleration

polynomials to match segment endpoint conditions [Ref 10:4].

The position time history, 0o , was calculated from the

resulting acceleration profile. With both acceleration and

position profiles for the design mission, the specific

force profile was generated using a truth model for

gravity [Ref 10:4]

f(t) = a(t) - 9[r(t)] (117)

where f(t) is specific force,

a(t) is total acceleration,

G[] is true gravitation, a vector not to be confused

with the distribution matrix of the linearized

navigation error propagation model, and

r(t) is from 0o, the design mission.

The navigation simulation was whole valued and based on

solving
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r(t) = a(t) = f(t) + G(t) (lb)

Letting ... represent navigation estimates, the navigation

simulation solved

(t) = f(t) + Gm[ r(t)] (118)

where Gm is the gravitational model simulated here as

Gm[r(t)] = G[r(t)] + 6gEg(t)] (119)

and 6g[r(t)] is the gravity disturbance stochastic reali-

zation from the statistical model. The navigation position

error is defined as

br(t) = r(t) - r(t) (120)

The Monte Carlo approach is to produce an ensemble of

6r(t)'s based on an ensemble of 6gLr(t)]'s. The gravity

disturbance ensemble is generated in such a manner that,

in the limit, the correlations of the statistical model are

replicated. The theory is that the ensemble of naviga-

tion error time histories is representative of those which

would be produced by the population of 6g's whence the

original statistics were derived. For this study Geodynamics

defined

g 2

6g (ti) = - gm i  (121)*

SLgi + 2(g/r)Ni

* This notation is maintained here for traceability to the
Monte Carlo study. Crossrange deflection m is equivalent
to transverse deflection p, and I to T from Appendix F.

116



where

I is the downrange deflection

m is the crossrange deflection

Ag is anomaly

N is geoidal height

I superscript indicates the local-level downrange-

crossrange-vertical coordinate frame.

The 2(g/r)Ni term corrects for the fact that Agi is

not exactly 6gz. This minor correction has an insignifi-

cant effect on the results calculated in this case which

is why 6g = -Ag was used as the model in Section IV. Due'

to computer core limitations, the desire for more dense

sampling of the deflection disturbances, and an assumed

altimeter-aided system, this hypothetical vertical distur-

bance was not even simulated [Ref 10:49] in the Monte Carlo

study.

Next, a statistical model was needed on which to

base the ensemble of gravity disturbance profiles. The

Tscherning-Rapp anomaly degree variance model [Ref 21:43-

46] number 4 was selected. The mathematical details of

this model are repeated, in part, in Appendix J. This

statistical model is based on a spherical harmonic repre-

sentation of the anomaly autocorrelation, assumed to be

spatially stationary and isotropic.

This model's coefficients explicitly represent the

contribution to anomaly variance of spatial frequency

terms - hence the title anomaly degree variance model. A
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closed mathematical form relating harmonic coefficient to

degree number is hypothesized (see Appendix J) and the

resultant model fit to empirical data by a parameter

identification process. Using gravitational field theory

the auto- and cross-correlations of and between deflection

and geoidal undulations are derived in turn using the

anomaly correlation model as a basis. Throughout this

derivation, the altitude coordinate information for both

positions of the correlation evaluation is maintained and,

thereby, provides the theoretically consistent means of

upward continuing the statistics.

To employ this model, 6g evaluations were generated

for 98 position points corresponding to 25-second time

increments. Let i subscripts represent ti quantities for

i=l, ..., 98. Then define

6g = 6g(r_ _(122)

From the sequence (6gi) = [6gi, 692, ... 6998 define the

ensemble mathematical vector
I

6g,

692

79 (123)

6998

Let 0 represent the correlation )
C9L 6gT (124)
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Equation (124) can be evaluated given the statistical

model, (122), and the sequence (ri. Define a square root

matrix S by

Th ssT  (125)

Then a population having the same covariance ¢ can be

generated by

g= Sq (126)

where a comes from a multidimensional gaussian population

with properties:

r ~tI~q]o (127)
and

qq T] I (128)

An ensemble of 90 q vectors was used to generate an

ensemble of gravity disturbance sequences using (126) and

(123). The disturbance-is introduced through (119) to the

navigation solution of (118). The result is an ensemble

of navigation error time histories, each given by (120).

From the ensemble of 6r(t), the horizontal components

were processed to yield downrange and crossrange variances

at each point. Let a2 and c2 represent these variances.

Then circular-error-probable (CEP) was calculated from

CEP = 0-562 Gmax + 0.615 0min (129)

where

'Umax = Maximum (ad, Oc] (130)

Gmin = Minimum COd, Ocd (131)
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5.3 Trajectory Model for Nested Integrals

With the Monte Carlo results established, attention

can be turned to the modeling choices for Nested Integrals.

Obviously, the statistical model must be the same as for

Monte Carlo. The trajectory model should be the same, but

the polynomial-fit trajectory generator was not available

for the Nested Integrals analysis. The trajectory was

simulated using PROFGEN [Ref 7 1, a computer program

designed to use trajectory segment definitions as input

and give a complete mission time history as output. The

PROFGEN segment descriptions and results are also provided

in Table VI for direct comparison to the Monte Carlo trajec-

* If tory data. The six segments are as follows a

a. Launch and accelerate (5.137 g's) from 615 to

2600 ft/sec groundspeed

b.' Pitch-up vertical turn (7 g's) to a pitch angle

of 16.30

c. Accelerate (5.137 g's) while climbing until 3900

ft/sec groundspeed.

d. Continue straight climb at constant groundspeed.

e. Pitch-over vertical turn (7 g's) level out at

80000 ft altitude.

f. Cruise at constant altitude and groundspeed.

The terminal dive phase of the last few seconds of simu-

lated flight was not modeled for the Nested Integrals analy-

sis.
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5.4 Inertial Navigation Error Propagation Model for

Nested Integrals

The inertial navigation simulation for Monte Carlo

was, in essence, that of an inertial computation frame.

The choice of instrument or computation frame does not

change the gravity disturbance vector and Britting [Ref 8]

has shown a general equivalence of error propagation models;

therefore, the modified Widnall-Grundy model used in

Section IV was used for this analysis as well. The verti-

cal channel disturbance was eliminated, and the Nested

Int rals step size was set at 25 seconds to be consistent

with the modeling and sampling of the Monte Carlo study.

Circular-error-probable was calculated from the Nested

Integrals covariance results using the same downrange-

crossrange rule as for Monte Carlo.

5.5 Comparison of Results

The circular-error-probable results for both the

Monte Carlo and the Nested Integrals analyses are presented

in Figure 16. The 95% confidence bounds for the Monte Carlo

results are also repeated [Ref 10] here.

The navigation accuracies calculated by these two

statistical methods differ somewhat due to modeling differ-

ences and Monte Carlo sample size limitations. The results

are generally equivalent, however, and another degree of

confidence in the Nested Integrals approach is warranted.

1
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The computational costs were quite different. For

the 90-case ensemble, the Monte Carlo computational time

was 30 times the Nested Integrals time. That is, the

entire Nested Integrals analysis was performed in the same

computation time required for three of the Monte Carlo

samples. Data was not available to compare post-processing

time, but the Monte Carlo study requires significantly

more post-processing since the sample outputs are 6b(t), not

covariance per se.

These results demonstrate that Nested Integrals has

fulfilled the expectations expressed in Section II. The

statistical analysis is as flexible as the Monte Carlo

method, but significantly less expensive computationally.

The numerical results by the two methods are equivalent; so,

the Nested Integrals' computational efficiency does not

entail any loss of authority in the results.

1123
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VI. Input Correlation Function Variations

In Sections IV and V, full-scale navigation error

analyses were performed using Nested Integrals but based

on different gravity disturbance statistical models.

Nested Integrals method is, in part, motivated by the need

to consider different statistical model forms. This sec-

tion gives a direct comparison of results from these two

models and from another fully developed model which has

not been previously presented in this work. The purpose

of this comparison is two-fold:

a. First, to demonstrate the capability to perform

analyses with a variety of statistical model

forms.

b. Secondly, the linear state space model has so

dominated past studies that the existence of other

models must be emphasized.

This simple comparison should demonstrate the availability

of fully developed alternate statistical models.

The demonstration requires for each analysis the

usual three models: trajectory, error propagation, and

disturbance correlation. The disturbance correlation model,

as discussed, will be varied with three separate mathe-

matical forms considered. These three statistical models

are discussed below in subsections 6.1, 6.2, and 6.3. For

each correlation model, a complete Nested integrals analysis

is performed based on the same trajectory and error propa-
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gation models. That is, everything in the analysis is

held to a constant form except the correlation model. 'The

benign great circle trajectory of Section IV is used along

with the modified Widnall-Grundy error propagation model.

The necessary data for these two models are found in

Table IV of Section IV.

6.1 Linear State Space Correlation Model

This model is presented in Appendix F, and its use

has been discussed in Section IV. Some additional comment

is due since this model is being compared here with other

model forms.

The basis of this modeling technique is a Gauss-Markov

process. The gravity disturbances are represented as the

outputs of a linear filter driven by white gaussian noises.

The resulting disturbances quantity auto- and cross-corre-

lations are consistent with gravitational theory except

for mihor approximations of the correlations between anomaly

and undulation and between anomaly and downrange deflec-

tion [Ref 19:B-61. The model used in Section IV and here

is based on an eight-state filter driven by three indepen-

dent noises. The resulting anomaly autocorrelation is

%gg(rr') = Cgg()) ~72 (1 + M - M2 ) eM (115)

where

M r */d (116)

and
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4 is the central angle separating 1 and r',
r is the reference radius value, and

d is the correlation parameter.

As it stands, this model is only valid for one altitude,

so the correlation is shown as a function of central angle

shift alone.

2The anomaly variance level of 1800 mgal used for

this model is consistent with the worldwide anomaly vari-

ance cited in References 22 and 23. The correlation para-

meter of 20 nm (Table IV) is an arbitrary figure selected

for the Section IV study. No one value of d will yield an

r overall good fit to empirical data. Several independent

models of this type could be postulated, each with di and

2
agi parameters. The linear state space disturbance model

used here should be viewed as a representative example, not
an ultimate model. The empirical correlation function of

a' Reference 23 has a correlation distance of 41 nm, so the

20-nm correlation parameter of this model, will yield dif-

ferent results on that account.

The correlation distance of the anomaly degree vari-

ance model is closer to t "s 20 nm parameter but the vari-

ance level is lower. The navigation error correlation

results are linear with variance level, assuming the entire

anomaly correlation is simultaneously scaled up or down

with the variance changes. The effect of correlation para-

meter change is trajectory dependent. Generally one expects

disturbances from a longer correlation parameter model to
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appear more like a constant input to the navigation algo-

rithm which acts as a low pass filter. The shorter corre-

lation parameter will induce higher frequency inputs and

tend to yield attenuated errors.

The linear state space correlation model example has

the same trajectory, error propagation and disturbance

statistical models as the great circle case of Section IV.

The circular-error-probable results are identical to the

Section IV study and are repeated here for comparative

purposes.

6.2 Anomaly Degree Variance Correlation Model

This model was introduced in the Monte Carlo study

discussed in Section V. Further details on this modeling

technique are presented in Appendix J.

* I The anomaly correlation function is assumed to be

stationary and isotropic. The function can, therefore,

be expanded in spherical harmonics (i.e. Legendre functions).

The symmetry of the isotropic correlation functions means

the harmonic expansion can be limited to the zeroth order

(i.e. Legendre polynomials).

0g(r,r') = Cg(rr') C P (C o s

n=O
(132)

The anomaly variance is given by

20 02g Z cn (133)Og n=O
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based on setting, r=r'=R and *=O. A mathematical expres-

sion is hypothesized for the manner in which cn approaches

zero as n approaches infinity. Each cn represents the

contribution to the variance from the n-th degree poly-

nomial, hence the name anomaly degree variance model. Note

that the spherical harmonic mathematical form inherently

gives upward continuation of the statistics without an

additional integration. Closed-form mathematical expres-

sions for (132) are developed and associated disturbance

quantity correlations derived from this basis (see Appen-

dix A).

The specific cn model and the associated parameter

set are discussed in Appendix J. The resulting model has

2
an anomaly variance of 1795 mgal and a correlation dis-

tance of approximately 30 nm. The circular-error-probable

for the great circle trajectory for this statistical model

is also presented later.

6.3 Attenuated White Noise Correlation Model

The two previously discussed models were introduced

prior to this Section. Anotherfully developed statistical

model exists and is included in this model comparison.

The attenuated white noise model is presented in

Reference 23 with additional discussion in Reference 22.

Some of the details are reiterated here in Appendix K.

The basis of this model is a hypothetical white noise,

anomalous potential process on a spherical shell at a depth
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d below the earth's surface. The earth-surface anomalous

potential is, therefore, the upward continuation of this

white noise process. LaPlace's equation relates anomalous

potential above the model noise process and the resultant
2! earth-surface process is correlated by way of the Poisson

Integral upward continuation [Ref 3].

The mathematical expressions which result from this

hypothesis are quite complex and an asymptotic form is

postulated. The asymptotic form maintains accuracy within

an earth's radius of the surface, and this region includes

all "terrestrial" navigation missions. The anomaly corre-

lation from the asymptotic form of the attenuated white

noise model is

0.(rr') = 0gg(4, h, h')

8d4 (2d+h+h')[2(2d+h+h')2 - 3(R)2 ] 2

(2d+h+h,)g (134)

where

is central angle between r and r',

h,h' are geocentric altitudes from r, rl' respectively,

d is white noise depth,

2
G 9 is anomaly variance, and

R is radius of sphere which approximates earth's

surface.

Note that the model has upward continuation of statistics

by the altitude data in the functional expression. To fit

empirical data, three statistically independent white noise
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shells were postulated each with a variance level and depth.

This device allows both long and short wavelength informa-

tion in the empirical function to be modeled. The final

correlations are the sum of these three independent models.

With the parameter sets Cdi3 and [a 2) identified
g1

(Appendix K), the resulting model has an anomaly variance

of 1821 mgals2 . The results using this statistical model

on the great circle trajectory are also presented in

Figure 17.

6.4 Comparison of Navigation Errors

The three model concepts presented above attempt to

replicate empirical statistics and to conform to the stric-

tures of gravitational field theory. The basic premise

for the mathematical form is different in each case, and

the result is different representations for each correla-

tion of interest. Equations ( 115), (132), and (134) pre-

sent the different functional forms for anomaly autocorre-

lation as examples. Each model employs the isotropic assump-

tion, so only four disturbance correlations are required.

These four correlations are presented in Appendix L in a

comparative study of the three models above.

The circular-error-probable results for each model on

the great circle trajectory are presented in Figure 17.

These results are considerably different as the Appendix L

comparison forbodes. Which model is correct? There is no
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general answer to that question. Each model purports to

represent the same physical process, and each, being

limited, fails in some way. Which model is "correct" is a

subjective judgment that will depend on the mission being

analyzed and the analyst's prejudices.

The attenuated white noise and the anomaly degree

variance models have upward continuation of the statistics

inherent in the mathematical form, a desirable general

feature. These two models are also internally consistent

with gravitational field theory. The linear state space

model requires addition-l work to upward continue statis-

tics [Ref 13] and only approximates consistency with gravi-

tational field theory.

The outcome of this investigation will not specify a

model type. This study's aims are simply to

a. Point out the existence of statistical model

alternatives, and

b. To demonstrate Nested Integrals method's capa-

bility to employ any of these different mathe-

matical forms.

The analysis results in Figure 17 provide the

demonstration of Nested Integrals capability and simultane-

ously shows that model selection has a direct effect on

analysis results.
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VII. Variations in Spherical Harmonic Modeling

Inertial navigation gravity model improvements should

be evaluated in terms of resulting system true accuracy.

Model improvement changes the residual field statistics

both in magnitude and in spectral content. If these

changes can be summarized in residual field correlation

models, Nested Integrals offers an evaluation technique to

select the model complexity which meets mission accuracy

specifications. This section demonstrates such an evalu-

ation on a hypothetically spherical harmonic model of

limited degree and order and with no error in harmonic

coefficients. While such a model is unrealistic, a study

based on this hypothetical model can give insight into the

sensitivity of system accuracy to model complexity.

As in Section VI, this analysis will involve varia-

tions in the input correlation function. Unlike Section

VI, the functional form will be constant. For this study,

the model changes are seen in model parameter variations.

The correlation modeling is discussed below. The great

circle trajectory model and modified Widnall-Grundy error

propagation model are again used .s a vehicle for the

statistical model variations.

7.1 Correlation Model

The gravitational model can be based on a spherical

harmonic expansion of gravitational potential U [Ref 3 :342]
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e0

U~r Z 4 ! JnPnco

S-Z Z r •omk+ sn P(c oso)n=2 m=l i
(135)

Pm(t) = 2 -n(lt2)m/2 (_l)k (2n-2k) tn-m-2kIi~ ~ ~ n Z = k!(n-k)!(n-m-2k)! (16,

(136)

j = integer (137)

Pn(t) = Pno(t) (138)

where

:Jr 40 is earth gravitational constant

r is radius vector of

a earth semi-major axis

0 colatitude

X longitude '
Jn are zonal harmonic coefficients.

JnmKnm are tesseral harmonic coefficients

Pn(.) are Legendre polynomials of degree nn
Pnm(.) are Legendre functions of degree n and order m

Zonal harmonic models of low degree and order are most

common, but higher order models have been formed [Ref 10].

Specific values for the parameters depend on the geodetic

model selected. This work does not depend on any specific

model so these data are not required explicitly here. Models

are based on truncated versions of (135) making use of

G(K) = V U(r) (139)
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where G is the gravitational vector. Any attempt to

identify coefficients will result in errors from the fol-

lowing sources:

a. Measurements are limited by economics and

politics, hence aliasing of higher order effects

onto low order coefficients.

b. Measurement errors.

Koch [Ref 24] has pointed out rather severe aliasing at

degree-and-order 12 truncation based on satellite data.

A perfect spherical harmonic model of any given finite

degree and order is unrealistic.

A study based on the thesis of perfect spherical

* harmonic modeling is a valid experiment to determine

sensitivity to model improvements. On this premise, a

study is proposed to determine the navigation error due to

perfect spherical harmonic modeling over a range of degree-

and-order truncations.

The effects of this level-of-detail variations in

the gravity model must be projected onto the statistical

model of the residual field. A spherical harmonic expan-

sion of the residual field would have zero coefficients for

all degrees less than the truncation number. With the

anomaly degree variance model, the statistical model alter-

ation is apparent. This model was introduced in Sections

V and VI and further discussed in Appendix J. Since the

anomalous field has zero coefficients in spherical harmonics
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below the truncation number, it is reasonable to model the

statistics similarly.

With the anomaly degree variance model, the anomaly

correlation is given by an equation from Section VI

Cgg(r'&) CP gg(r,rl,*)

00 (112\)n+2
zP(cos ) (132)I n=O nrr' n!o

The coefficient cn is determined by an algebraic rule given

* in Appendix J. For this study,

0 n <2 or n <N
Cn =A~nl) - (140)

n-2)(n+B)ndn>2

where N is the degree and order of the spherical harmonic

truncation. The anomaly degree variance model modified

by (140) is the disturbance statistical model for this

study.

7.2 Navigation Error Results

Nested Integrals covariance analyses were conducted

for truncation levels of 2, 36, 72, and 180. Again, these

studies were based on the modified Widnall-Grundy naviga-

tion error propagation model and the great circle trajec-

tory model. The truncation level 2 is roughly equivalent

to an ellipsoidal model and represents the unmodified

anomaly degree variance model. The circular-error-probable

results for all cases are presented in Figure 18. The

accuracy is generally better with each increment. Note,
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however, that a more precise model does not guarantee

better system accuracy at all times. The dynamics of the

navigation error propagation model apparently causes the

ellipsoidal model performance to be better than more

detailed models near the 160 minute mission time.

The accuracy improvement implied by Figure 18 compari-

sons is desirable; the cost of producing the corresponding

models is not. The system designer must weigh both factors

in deciding on a level of model detail. Nested Integrals

supplies a method to answer the model accuracy, half of

the system design trade-off.
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VIII. Nonstationary Statistics Demonstration

The statistical models presented in Sections IV, V,

and VI are all based on an assumption of homogeneity. This

assumption is instrumental in deriving the mathematical

expressions for the gravity disturbance stochastic model,

2 but the homogeneous assumption is not required for Nested

Integrals analysis. Quite the contrary, the only require-

ment of Q(r,r') is that it be integrable. This section pre-

sents some rationale which might be used in supporting an

assumption of nonstationary statistics for the gravity

disturbance field. Then, a simple nonstationary example

is presented to demonstrate Nested Integrals validity on

this type of problem.

First, the statistics of the disturbance gravity field

(after the ellipsoidal model has been removed) vary

regionally. Long has shown [Ref 25] considerable varia-

bility within the United States alone. One can surmise

from predominant geographic features like the mountain

ranges, which run primarily along north-south lines in this

country, that geodetic features are similarly distributed.

The Rice data [Ref 12] from a survey along the 35-th paral-

lel gives some insight into the residual field variations

which might be anticipated on a transcontinental mission.

The mission region definition is the key to whether

the nonstationary question needs to be addressed. If the

mission definition is vague and worldwide in scope (e.g.
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for a short-range transport mission), worldwide average

statistics seem reasonable. If the mission region is

restricted (e.g. for MINUTEMAN missiles), regional charac-

teristics should not be disregarded.

Since Nested Integrals has the inherent capability to

process a nonstationary model for the gravity disturbance

correlations, a simple example is proposed for demonstra-

tion purposes. Again, a proper casting of the problem will

yield a case for which linear state space techniques offer

a crosscheck. The restrictions, then, are to allow the

verification and are not required for Nested Integrals per

se.

The great circle trajectory model and the modified

Widnall-Grundy navigation error propagation model are again

used. The Table IV data of Section IV again applies with

the exception of anomaly variance level which is explained

below.

8.1 Correlation Model

A nonstationary statistical model gives Q(r,r') which

cannot simply be expressed as Q(*) or Q(*,a). For this

example, the nonstationary statistics are summarized as

anomaly variance which varies with longitude. One could

hypothesize this model as

2(r 2 W~\ (141)

Longitude is defined by the design mission trajectory,

hence can also be considered a function of time
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a2 (t) = ar2CL( t)]3 (142)

Applying the above rule to the linear state space

gravity disturbance model of Appendix E will yield a Q (t)

nonstationary temporal noise strength. For linear state

space analysis, when longitude changes, the gravity disturb-

ance model also changes from one steady-state system to

another since P depends directly on This quasi-

stationary modeling was used so that P would not have to

be calculated and integrated.

Applying the above concept in a Nested Integrals

analysis requires an interpretation. When evaluating
(2

Q(.rn,.ri) does one use ki or X to calculate a2 ? The

answer is the same as for the question of which heading

ai or an should be used in transforming coordinates in

which Q is expressed. D(tn ) represents a driving term for

at t=tn, the current time. The information entering

through D(.) at tn concerns the correlations of u(tn) with

all past values, but as with a, the information is paired

(tn,ti). The correct interpretation is that the gravity

correlations at tn apply, hence a (K ) should be used. To
g n

be rigorous, the order of arguments in Q should be inter-

preted by rewriting (29b) as

t T
D(t) = Sto Q[r(t),r(p)]GT(p) D (t,p) dp (143)

and interpreting (28) modified for the nonstationary statis-

tics of this example as

QC(t) ,r(p) ] Q[*,r(t)] = Ql[',(t) ] (144)
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2
The specific rule used for ag dependence on X is.

2 (X) = (1 + 10) 1800 mgal2  (145)

For the great circle trajectory, the anomaly variance begins

at the same level as for the Section IV study. By the end

of the 204-minute flight, the variance level has increased

by 25 percent. This change was not selected to be real-

istic; rather the result should be distinct from the Section

IV case (Figure 10). With this understanding, equation (145)

properly interpreted gives a covariance problem which

either Nested Integrals or linear state space methods can

solve.

8.2 Comparison of Results

The circular-error-probable computed by both Nested

Integrals and linear state space covariance analyses are

presented in Figure 19 for comparison. The results again

agree but not as well as the case of Section IV which had

static statistics.

This case demonstrates Nested Integrals' ability to

computc correctly covariance even in the case of non-

stationary statistics. This example was simple and some-

what unrealistic. Considerable study would be required

to generate a valid nonstationary model. If the mission

definition warrants it, and if empirical data are available

to support the nonstationary model, the Nested Integrals

approach can be used in performing the navigation error

covariance analysis.
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IX. Kalman Filter Updates

4 Any simulation attempts to describe the response of

a system to some stimuli within some environment. Nested

Integrals, as a statistical simulation, gives navigation

system errors due to gravity disturbances within the envi-

ronment of the trajectory and navigation system. Modern

navigation systems rarely use inertial instruments alone.

External measurements (e.g. radar position fixes) are used

to overcome the low-frequency errors to which purely iner-

tial systems are prone. These updates are a part of the

error propagation environment which was not treated in the

Nested Integrals development in Section III. The purpose

of this section is to develop modifications to the Nested

Integrals which will properly account for the effects of

measurement updates on the navigation error covariance.

The nature of the navigation update must be specified

in order to embed the effects into the Nested Integrals

algorithm. Some assumptions will be made on the types of

systems and update methods which are most likely to be used.

First, any system of high accuracy will have linear velocity

or its equivalent in the system model. Secondly, the up-

date method will either be by Kalman filter methods or by

closely related schemes (extended Kalman filter for example).

A set of developed theory exists [Ref 15, 325-341] concern-

ing the evaluation of filter performance using a truth model

to simulate all those environmental effects omitted from
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the necessarily limited filter model. A similar line of

reasoning will be followed in this development.

For Nested Integrals analysis, the truth model will

include the gravity disturbance terms. Since these gravity

error quantities do not generally fit the desired Markov

process mold, no advantage is gained by naming them states.

The G(t)u(t) driving term mode of (3 ) will be retained.II
The filter is assumed to contain states for the velocity

errors, and the velocity error states will normally be

IC driven by the gravity disturbance terms. The geoidal

height N may be modeled to drive the system through the

system barometric altimeter, if applicable. The point of

view taken is that the filter model adequately describes

the propagation of navigation errors. For an accurate

navigation system, this assumption is likely to be valid.

Other states can be appended to the filter model if neces-

sary with only slight modification of the following develop-

ment.

Once the algorithmic changes are derived, the question

of verification must be addressed. For this case, the

linear state space covariance analysis is again employed

on a simple case. The trajectory and gravity dist'urbance

models are selected to comply with the linear state space

limitations. The Nested Integrals results can then be

compared to the linear state space answers for verification.
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9.1 Theory Review

The objective to account for Kalman filter updates can

not be met without knowing the Kalman gains. The update

requires a system model and a measurement model, and these

models are used to calculate Kalman gains in an analysis

separate and distinct from the Nested Integrals analysis.

This theory must be reviewed before the algorithm changes

are developed.

The filter model equivalent of ( 3 ) is

Sf(t) = Ff(t)xf(t) + Gf(t)wf(t) (146)

where xf(t) is an n-vector of error states which affect

navigation performance,

Ff(t) is the nXn state propagation matrix,

wf(t) is an mf-vector of white Gaussian noise, and

Gf(t) is an nXmf distribution matrix.

The noise wft) satisfies the following

(F[f(t)] = o (147)
eniwf(t) wT(t+T)] = Qf(t) 6(_) (148)

The filter noise model is not limited to, indeed may not

even address, gravity disturbances. The key point here is

that the filter environment must be modeled as a separate

entity from the Nested Integrals analysis. The model pre-

,ented in (146), (147), and (148) is the standard approach

in Kalman filter design [Ref 15: 291-297]. The subscripts

will be omitted on most terms from here forward since the
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filter model is assumed to be sufficiently detailed to

serve as the Nested Integrals navigation error propagation

model. Exceptions are Q f and Gf which are different than

Q andG from (28) and (3).

For the filter model of (146), it follows that

T T
f(t) = F(t)Pf(t) + Pf(t)F (t) + Gf(t)Qf(t)G (t) (149)

subject to the initial condition Pf(to). Also,

i(t, ti) = F(t) ;(t,ti )  (16a)

Subject to the initial condition 0(ti.t i) = I. These equa-

tions are fundamental in describing the behavior of the

filter error-covariance estimate between measurement up-

dates. The effects of measurement updates are assumed to

be discrete corrections to navigation estimates, and the

discrete update of the Pf-matrix is needed to describe the

filter operations. Continuous feedback of revised esti-

mates can also be treated with a few modifications to the

development here [Ref 15:333].

The Nested Integrals solution is based on a discrete

solution time sequence to < t1 < ... < tN, symbolicallyi tn). The measurement updates are assumed to come at time

points which are a subsequence of this time base. That is,

measurements are at tn < tn < . < tn. symbolically

[tn. At each time tni an r-dimensional vector measure-
1 n.

ment occurs and is described by

Z(tn ) H(tni)(tn i) + V(t n) (150)
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where

H(t ) is an rXn measurement matrix, and

v(t ) is an r-dimensional discrete, white, Gaussian
noise process satisfying

S[(t)] 0 (151)
R~tn i=j

6 1 v~t!T~t] { ~t~)(152)
Let tn indicate the condition of a quantity prior to

1

the update at t- , and let t+ represent the post-update

conditions. Then, using (149),

+ (tni0t T p)(T
+n ~ ( p)Gf(p)Qf(p)Gf~) (t, p) dp

1 1 (153)

at tn the Kalman gain is calculated by

(14

The update of the filter covariance matrix is given by

P +t Pf~ ~~)~f)ft
(£ n~ nn 1Ht )

= [~K~n )~tn)]Pf(t-i) [I-K(tni)H(t ) T

+ K(tn )R(t n )K T(t n) (155)
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The equation set (16a), (153), (154), and (155) allow the

computation of the Kalman filter gains K(t ) needed totn1

update the covariance calculated, separately, by the Nested

Integrals method.

9.2 Nested Integrals Algorithm Changes

The Nested Integrals algorithm calculates the covari-

ance between updates correctly. That is, given P(t; )
and for tn 1 < t < tn , equation (29a) is valid

P(t) = F(t)P(t)+P(t)FT (t)+G(t)D(t)+DT(t)GT M (29a)

But, since D(t) inherently includes the propagation of

U! errors in its definition, the effects of updates on D(t)

must also be included in the Nested Integrals algorithm.

Recall
tT T

D(t) = St0 Q(t,p)GT(p) T(t,p)dp (29b)

To reflect the measurement update on both P(t) and D(t),

the error state x is propagated across the update as

X(tn) = [I-K(tn )H(t__ )Jx(- ) + K(t )v(tn) (156)
n 1 1 n 2.. i

But v(tni) is zero in this gravity-error-only analysis, and,

this form can be used to interpret a discrete state propa-

gation matrix as

N(t + i ' t n i  I-K(tni)H(tn~ (157)

152

- - _ .. ...........



Since Nested Integrals involves geodetic errors alone, the

R-matrix of (155) is not involved in the P(t) update. One

should note that any altimeter errors were assumed to enter

the error process through a u(t) element. One could pro-

pose altimeter updates in which case v would be correlated

with u; this approach is not taken here. Using equation

(155) as a guide, the covariance update is

t + ) =i (P(tni )0 (tn ni) (158)

The update of D(t) must be derived since an equivalent

matrix is not normally treated in Kalman filter theory.

The integrand of (29b) is assumed to be finite, so the

( upper limit of the integration can be moved from one side

of the update to the other without destroying the equality.

That is, the interval (t-,t +) is assumed to be a set of

zero measure. The resulting D(t) across updates can be

found by

t+.

t+ )= ;; ~+,)T(p) (DT(t+

D(f ni ni ,P)dp

0t n i Q(t ,p)GT(p) 
pT(t+ p)dpJt o  ni n i

it0
;- tn Q(tni'p)GT (p) (t i + )P (tn p )  T dp

0j 1[f"tni Q(t -,9p)G T(p) DT( tn.,,P)d p (DT(t+i t-

t o  Tn i +t ni tn
=D(tn i ) T(t n i t n i  (159)
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This update for D(t) will force discontinuities at tn.

In solving the differential equation (29a) for the inter-

vals between updates, the pre- or post-update D(t) must be

selected with care. Let i = ni; for the interval tj_ 1

to t., the P calculation should be based on D(t>_l) andWJ
D(t:). When t. is not a measurement update time, the

and t data are the same.

The discrete error propagation defined by (15?), there-

fore, gives the key to the Nested Integrals Kalman filter

update. Using the result of (15), P(t) is updated as

specified in (158) and D(t) is updated as specified in

(159). The only new information required is the Kalman

gain K(tn) and the measurement matrix H(t ).

9.3 Verification Case

Linear state space techniques are the natural mode of

Kalman filter design and analysis. A linear state space

covariance analysis can be defined to include Kalman filter

updates, and the results used as a benchmark to judge the

modified Nested Integrals algorithm. The great circle case

of Section IV will again serve as the vehicle for comparing

the results from the two covariance analysis methods. The

- measurement model and the filter model must be specified in

addition to the three models (trajectory, error propagation,

and disturbance correlation) of the great circle case.

Some additional explanation is required concerning how the
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linear state space method is modified to incorporate the

effects of the Kalman filter update.

The two new models required are described below. The

linear state space covariance method is described in

Section II; recall that the covariance of an augmented state

is calculated. The augmented state is given by

Xa ( t )  =4.g t (7)
xx t

The effect of the update equation above is on the x(t)

states alone. Using the notation for discrete error propa-

gation matrices,

aI-K(t )n( ) 10

ati --) = J (160)iw i 0 0

The linear state space augmented state covariance update

is given by

P + + pt- )Pa( )T (t+  t (161)atn ) a(tn ni a nla n, n)

For the time intervals between updates, equation (29) will

describe the dynamics of P(t). The modification of the

Section II described linear state space covariance analysis

by (161) completely specifies the analysis by that method.

A practical note should be made before proceeding with

the model definitions. The predictor-corrector integration

algorithm used to solve (14) and (29a) is not designed to

handle discontinuities. The discontinuities at the update

times would create large predictor errors for which the
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computed corrections might be erroneous. This problem is

avoided if one reinitializes the integration algorithm

after each update. The instructions for this initializa-

tion are a normal part of the software description with

such algorithms.

9.3.1 Filter Model

To keep the verification case relatively simple, no

additional states are considered other than the nine states

of the modified Widnall-Grundy navigation error model.

Examples of possible additional states are gyroscopic drift

and accelerometer bias. The system noise model simulates

the effects of such errors through white noise driving the

velocity (x4,x5 , and x6 ) and attitude (xTx 8 , and x9)

derivatives. Interpreting this filter model choice in terms

of equation (146), define

w1(t)f .

Af(t) ( (162)

w6 (t)l

and the associated distribution matrix is

' Gf(t) Gf = (163)

where Gf is 9X6 and the identity matrix is 6X6. The noise

strength matrix associated with &f is given by
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2Qv 0 0 0 0 0

20 Qv 0 0 0 0

2

0 0 Q 0 0 0
A V

Qf 0 0 (164)
f. 0 0 0 Q 2 0 0

0 0 0 0 Q 0

0 0 0 0 0 Q2

The acceleration-level white noise is specified at a level

of Q = 16xi0-4 ft2/sec3' and the attitude-rate-level noise

is modeled as QE = 36xi0-12 radian2/sec. These noise

levels define an inertial navigation system of approximately

one nautical mile per hour circular-error-probable growth

rate.

The modified Widnall-Grundy x(t) and F(t) along with

(162) through (164) give the filter structure. This struc-

ture driven by the noise model above governs the filter

model covariance simulation.

9.3.2 Measurement Model

A horizontal position fix is hypothesized as the

measurement external to the inertial navigation system.

A radar system with a 100-foot root-mean-square resolution

takes east and north position coordinate measurements at

intervals throughout the mission. For simplicity, the

measurements are made on five-minute intervals. This rate
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corresponds to once every ten Nested Integrals integra-

tion steps -- recall the 30-second step size from Table IV.

The horizontal position measurements allow the obser-

vation of east position error xe and north position error

xn as described below;

xe = r cos0 6X = r coso xI  (165)

xn = r 6 = r x2  (166)

With (165) and (166), define

z = e} (167)x Xn

and for (150)

Srcoso 0 0 0 0 00001
H =[0 r 0 0 0 0 0 0oj (168)

The noise strength of (152) is modeled as

R 0 r 2 (169)

where2 is (0 ft)2 by the above assumption.

The measurement model is complete with (168) and (169)

providing the necessary components of (154) and (155).

9.4 Comparison of Results

Based on the filter and measurement models, a set of

Kalman gains were calculated and stored for use in both the

linear state space and Nested Integrals covariance analyses.
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Then, separate results were generated using these alterna-

tive statistical methods. The circular-error-probable

for both methods is plotted in Figure 20. The two curves

are practically indistinguishable, and the curve markers

are again offset to clarify that two curves are plotted.

The conclusion from this comparison is that the modi-

fications to Nested Integrals can be used to account

properly for the effects of Kalman filter updates through-

out a mission. As in Section IV, the linear state space

solution is known to be correct on this restricted trajec-

tory. Nested Integrals has the capability to compute co-

variance on a wider variety of missions and with more

flexibility in the choice of the gravity disturbance

statistical model, and now has been extended to include the

flexibility of employing Kalman filter updates on the

navigation mission.
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X. Summary and Conclusions

The objective of this research was to develop a new

computational technique which would provide a performance

assessment of alternative gravity models on realistic

scenarios. This section provides a summary of the develop-

ment of the Nested Integrals algorithm. The verification

cases and capability demonstrations are, also, recapitu-

lated for completeness.

A navigation system accuracy measure was selected as

the model comparison performance measure. Statistical

methods of producing such a measure were selected since

these methods admit the limitations in modeling the gravity

field and permit analysis on a general mission definition.

Two present statistical methods were considered and dis-

cussed: linear state space covariance analysis and Monte

Carlo. The covariance integral was developed as a com-

promise offering more flexibility than linear state space

covariance analysis but promising a savings in computa-

tional costs compared with Monte Carlo.

Numerical methods were developed to compute navigation

error covariance based on an integral expression which re-

lates the covariance to the gravity disturbance causes.

Three models are required for these analyses. A linear,

first-order differential equation, (3), which relates

the navigation error rates to navigation errors and to the

gravity disturbances. Because inertial error propagation
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is trajectory dependent and because the gravity disturbance

is a spatial function, a design-mission trajectory model is

needed to represent the dynamics and geometry of an ensemble

of missions which form the statistical sample base.

Finally, the statistics of gravity disturbances encountered

over this ensemble of missions must be summarized in the

form of the correlation model. This correlation function

is the key element in the integrand of the covariance

integral.

Three separate numerical algorithms were developed

to approximate the covariance integral. Two of these were

direct integral approximations; one used a rectangular

rule and the other trapezoidal in approximating the inte-

l' gral. The third algorithm was created by taking the time

derivative of the covariance integral using Leibnitz' rule,

equation (29). The covariance integral was, thereby,

recast from a double integral into two single integrals

which are nested. The outer of these Nested Integrals is

in a form compatible with standard predictor-corrector

numerical solution techniques.

To implement any of these three numerical methods

P would be computationally very costly if a naive approach

were taken. To avoid the requirement to store state

transition matrices between each pair of evaluation points,

the semi-group property of state transition matrices was

used. This reduced the data storage requirement to approxi-
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mately the square root of the storage required by the

straightforward approach. To accommodate this storage

savings and avoid data retrieval costs, an indexed sequen-

tial file structure was selected for the required state

transition matrix and position data. This approach permits

relatively efficient sequential file use once the initial

record is located. To exploit this feature, summations

which occur in the integral approximations are run in the

reverse chronological order. Together, the file structure

and algorithmic form give an economically viable method of

computing covariances.

Of these three methods, Nested Integrals proved to

be more efficient and of equal accuracy. The analysis of

an undamped Schuler loop driven by exponentially correlated

noise was used as a medium for this tradeoff. This example

problem demonstrated graphically the need to select inte-

gration step size small enough to meet the Shannon rate

and correctly represent the frequency content of the inte-

grand of the covariance integral. Results on the subse-

quent damped Schuler loop example demonstrated that the

error level is lower in comparison since the system model

is inherently stable.

Once the Nested Integrals method was selected, a full-

scale verification study was conducted using a great circle

trajectory and a shaping filter gravity disturbance model.

The verification was successful, and the same comparison
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format was used to demonstrate the errors in linear state

space covariance analysis on more complex trajectories.

Minor circle trajectories were used to demonstrate that

linear state space results, while correct on a great circle

,ase, are increasingly in error as the circle radius is

decreased.

Next, the Nested Integrals method was verified against i

an independent Monte Carlo study of a highly-dynamic air-

launched missile. This study represents a real-world

application of Nested Integrals. The Monte Carlo study

models were emulated in the Nested Integrals analysis. For

this study, a different functional form for the correla-

tion model was specified in the Monte Carlo analysis, and

the statistical model flexibility inherent in the Nested

Integrals formulation was required. The results from both

methods compared well and offer an additional validation

of Nested Integrals. For this problem, Nested Integrals

demonstrated a 30:1 computational time advantage over

Monte Carlo. This efficiency was a prime objective of the

Nested Integrals method.

Clearly, Nested Integrals meets the original expec-

tations: it is a more flexible analysis technique than

linear state space covariance analysis, and it is computa-

tionally more efficient than Monte Carlo. Three demonstra-

tions were performed to give further examples of specific

Nested Integrals capabilities. Three different correlation
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models were analyzed using the same trajectory and error

propagation model for each study. This study demonstrated

the correlation model flexibility of Nested Integrals and,

simultaneously, demonstrated the variability in results

possible with existing, supposedly equivalent, correlation

models.. Next, the ability to compare gravity models was

demonstrated using perfect spherical harmonic modeling as

a case study. The final demonstration verified the capa-

bility of Nested Integrals to account properly for non-

stationary statistics, a correlation model nuance which

might have application on some missions.

In a final development, modifications to Nested

Integrals algorithm were made to accommodate Kalman filter

updates. This capability is needed to analyze most modern

navigation missions. A linear state space covariance

analysis on the great circle trajectory was used to verify

the modified Nested Integrals method.

With these developments, demonstrations and verifi-

cations, a new statistical analysis technique has been

presented. This technique offers a more flexible alterna-

tive to the common linear state space method while being

more computationally efficient than Monte Carlo. The

Nested Integrals algorithm is a general method for producing

the navigation system accuracy statistical performance

index by which gravity models can be compared.
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XI. Recommendations for Future Research

This research has produced a gravity model evaluation

method which can be applied on general mission scenarios.

This section contains some suggestions to improve this

statistical method and suggestions of possible implemen-

tations which require additional research.

First, to develop this method further, it is suggested

that the Nested Integrals algorithm be developed for auto-

mated variable step size selection. The trajectory model

would have to interact directly with Nested Integrals.

Since approximation error is usually proportional to a

power of integration step size on simple, one-dimensional

integration rules, one might calculate the coefficient at

each point and select the next step size based on the

reciprocal of this norm. This time-step calculation would

tend to give constant potential for approximation error.

Large time steps would be allowed when the coefficient is

small, and during highly dynamic regions the coefficient

would be large forcing smaller time steps. The end result

could be a substantial increase in efficiency since compu-

tational costs are roughly quadratic with number of points.

A comprehensive study of the accuracy bounds of the

Nested Integrals algorithm would be useful in future appli-

cations. One approach would be to treat this as a frequency

response problem. The correlation function could be cos W

where W is the frequency parameter. Using this correlation
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analyses can be conducted over a range of W values. The

trajectory and error propagation models must be given. A

single error quantity, like maximum circular-error-

probable, plotted versus w would be the form of output.

Another parameter in this study would be integration step

size. These results would be trajectory dependent, and the

true covariance would be required to make algorithm error

observable.

The batch-processing nature of Nested Integrals will

limit its use in real-time applications. As a post-

mission analysis tool, it offers some attractive features.

For test flights of navigation systems, Nested Integrals

can be used to account statistically for gravity induced

errors on complex trajectories. Better estimates of instru-

ment errors would be the motivation for this analysis.

Research is required to incorporate Nested Integrals into

* the post flight smoothing and error identification processes.

Along a similar line, Nested Integrals should prove

useful in gravity surveys conducted with inertial naviga-

tion for position reference. The algorithm should prove

useful in post-survey data processing. With adaptation,

the method developed here should also be a useful tool in

survey design.

Another application is to evaluate different gravity

modeling techniques. The example presented in Section VII

is simple; any realistic comparison would pose a distinct
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problem for the analyst. How does one account for gravity

model effects on the residual field? Models can be of

different functional form (e.g. global spherical harmonics

versus local Chebychev polynomial functional fits) and

of different levels of detail within one model type (e.g.

different order Chebychev polynomials within the same

region). Finding a general framework within which both

types of problems can be solved is a substantial research

task. The residual field is treated as an error field with

first-order approximations throughout the theory. Perhaps

the gravity model improvements can be represented, to

first-order, as a bounded linear operator over this error

field. Symbolically

where T' is the residual potential field after the improved

gravity model and .operates on T, the residual field

from the ellipsoidal model. The covariance of the residual

field would be given by

T
TT i TT l2 2

where the operator subscripts indicate which position vector

would be involved. This idea would require a substantial

research effort to bring it to fruition.

Research is needed on two issues concerning the

statistical model for gravity disturbance correlations.
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First, although all three of the modeling methods studied

in Section VI are intended to approximate the empirical

correlation function, there is no mention of completeness

of the underlying approximations. That is, "can any of

the available modeling options replicate the empirical

correlation function within some arbitrarily small norm?"

Second, the analyses conducted herein assumed the residual

field statistics can be "upward continued" [Appendix A

and Ref 13] from some reference surface. What if the

inertial navigation system (equivalent if not explicit )

gravitation model is not harmonic? Such approximations

exist in less precise inertial systems than addressed herein.

With these existing non-harmonic models, how can correla-

tions of gravity errors aloft be surmised from reference

surface statistics? For both of these potential research

areas, the first question to be answered is whether or not

these statistical modeling questions are important in terms

of the potential impact on answers. That is, what is the

sensitivity of navigation error statistics to empirical

correlation function approximation errors or to non-

harmonic gravitation model effects.

Kalman filter effects were included in the Nested

Integrals algorithm in Section IX. The measurement update

tends to sever the correlation of present navigation

errors to past gravity field errors. The effects of mis-

modeling the long-time-range gravity disturbance

17
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correlations in Q(r,r') should be less important because

of the update. A navigation system with frequent updates

might be adequately treated by the more efficient linear

state space method even with trajectory restriction viola-

tions. Numerical studies, such as the minor circle para-

metric study of Section IV, could give insight into this

issue. A comprehensive study would be useful in planning

the statistical analysis of future systems and missions.

These research areas seem the most promising exten-

sions and applications of Nested Integrals. Any number

of small studies similar to Sections VI, VII, and VIII

of this work would contribute to understanding the uses

and limits of Nested Integrals. Additional comparisons

between Nested Integrals and linear state space analysis

would be useful in further defining the accuracy limits

of the efficient linear state space method.
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APPENDIX A

Comments on Gravity Correlation Models

A gravity disturbance correlation model is required

in order to perform the analyses which are the subject of

this research. This model conveys, in an average sense,

the interrelationships of all gravity disturbance terms

which affect the navigation accuracy. The choice of trajec-

tory and navigation error propagation models is straight-

forward in comparison to the choice of this statistical

model. No panacea exists in this case. A universally

accepted model which can be used in all cases has not been,

and probably cannot be, defined. The cases which might

create problems for a general model include geographically

restricted missions and gravity model improvements. In

either of these examples, a correlation model must be formed

in a manner peculiar to the problem being addressed. The

purpose of this appendix is to illuminate some of the

issues which should be considered in choosing the gravity

disturbance'correlation model.

The first problem an analyst faces when surveying model

concepts is language. The fact that few orderly threads

weave through this labyrinth of model types compounds the

confusion. No clear taxonomy classifies these models for

the novice, so a few of the labels applied to models are

defined as follows:
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a. Homogeneity. [Ref 4t85] The statistics are not

a function of position (i.e. spatially stationary

statistics). Obviously, gravity quantities change

with altitude, so this term describes the behavior

at one altitude level.

b. Isotropicity. [Ref 4:85] The statistics are

independent of direction or heading in the hori-

zontal plane.

c. Global. The statistics are worldwide averages

or expectations as opposed to local or regional.

d. Anomaly.* The statistics are based on gravity

anomaly Ag. The symbol Pgg(.) is used in this work

for anomaly correlation. Moritz [Ref 4:83] and others

in Geodesy use C(.) for this function.

e. Potential.* The statistics are of or based on

anomalous potential T. The symbol CpTT(.) is used

herein; others [Ref 4:86] use K(.) for this function.

f. Undulation.* The statistics are of or based on

undulation N of the geoid (also known as geoidal

height). This quantity is directly related to

anomalous potential T by Brun's formula [Ref 3]

T()= g N(r) (A-l)

Therefore, the correlations are related by

CPTT( ') = g2 qhN(.) (A-2)

* Definitions for Ag, N, T, and other gravity disturbance
quantities are given in Reference 3.
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g. k-th order. This term states the order of Markov

process used in the model. For example, a third-

order undulation model is based on undulation

correlation and structured as a third-order Markov

process.

h. Upward Continuation. Not a classification per se,

this term refers to the extrapolation of statistics

aloft from the datum surface. Some models (e.g. the

Tscherning-Rapp anomaly degree variance model [Ref

21] in Sections V and VI) have this inherent capa-

bility; other models do not (e.g. the linear state

space model [Ref 133 introduced in Section IV).

i. Self-consistent. The model generates gravity

disturbance term statistics (e.g. auto- and cross-

correlations) which are consistent with respect to

the gravitational field theory from which interrela-

tionships of these terms can be derived.

These terms and more await the researcher delving into this

modeling issue. The three full-scale models discussed in

Section VI [Refs 19, 20, 21, and 223 offer a starting point

at least. References 2, 4, and 12 offer some tutorial

assistance, also. In the end, whether or not a model is

adequate will be the subjective judgment of the analyst,

made either consciously or by default.

Consider now a scenario of how a model might be formed.

Empirical correlation functions can be generated from gravity
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(or gravity related) measurements. A model structure is

next either selected from existing examples or derived on

some new rationale. The model parameters are selected to

replicate the empirical function. And finally, the mathe-

matical structure and the data parameters of the model are

programmed as a subroutine which accepts position pairs as

input and which yields the required correlations as outputs.

The correlations or at least representatives should be

compared to the empirical function for validation.

The first step assumes gravity data is available. The

primary data available for such analysis are gravity magni-

tude measurements. These data are converted to free air

anomaly and referenced to the geoid. So, any averages

formed from these data apply to the geoid or an approxi-

mating, analytical surface like the Bjerhammer sphere [Ref

3 1321]. These geodetic data processing steps introduce

error through the models [Ref 3] used to produce the anomaly

and to estimate the value on the geoid. The data produced

by such processing is no longer truly "empirical". Corre-

lation models based on these processed data will be referred

to as "empirical", but the reader should be aware of these

possibly corrupting influences.

Deflections of the vertical have been measured by

astro-geodetic means and geoidal undulations by satellite

altimetry. These data could also be processed to form

empirical correlation functions. Indeed, heterogeneous
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types of data can be used, if coverage is adequate, to

produce cross-correlations as well. Such steps need not

be taken for, as will be shown later, only one correlation

function is needed. The other auto- and cross-correlations

can be derived from this base function using interrelation-

ships from gravitational theory which is assumed to correctly

represent the physics of this problem.

Data for model development is limited by economics

L and by politics; therefore, compromises must be made in

representing the correlation function. The manner in which

the empirical correlation is formed makes a statement about

the type of model it will support. If the correlation is

calculated by averaging data over the earth's surface, the

resulting correlation function will represent global sta-

tistics. If the independent variables for the averaging

are relative position quantities, the average represents

a model based on the homogeneous assumption [Ref 4 :85].

If the independent variable is central angle (or equivalent

surface arc distance) shift with the average being over all

headings, the resultant empirical correlation is consis-

tent with the isotropic assumption [Ref 4 "85]. With all

of this structure, the reality of the data availability

is that global high frequency coverage does not exist due

to the magnitude of the task implied. The homogeneous

and isotropic assumptions will undoubtedly be made just

to bring more data points into the empirical formulation.
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Assuming that the empirical correlation exists, the

model structure must be defined. The examples in Section

VI are fully-developed and appear adaptable. Whether these

models can fit an arbitrary empirical correlation function

with arbitrarily small error is a question worthy of atten-

tion. For now, assume the model can be fit to the empirical

function with acceptable veracity. Then, one merely trans-

forms the mathematical model into a computer subroutine

and proceeds with the analysis.

The question may be raised, "Why go to these mathemati-

cal forms when the empirical function is the desired corre-

lation?" Obviously, a table look-up approach can be used

on the basic correlation function. The Q(r,r') matrix func-

tion of (28) requires a set of auto- and cross-corr3lation

functions, however, and this set should be consistent. Data

does not exist to produce adequate empirical models fcc all

of these gravity disturbance terms, so producing them indi-

rectly from a basic model is required. The number of Q(r,E')

evaluations is great on even a modest analysis. The cases

in Section IV were based on 409-point Nested Integral analy-

sis, and each case required 83,845 Q(r,r') evaluations, for

instance. A closed mathematical expression is a practical

necessity in such analyses.

Fortunately, a closed mathematical expression is

only required for the basic correlation function. The

other correlations can be derived from this source. The
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anomaly or the anomalous potential correlation is suffi-

cient [Ref 4:94-98] as a base for this derivation. To

see this fact, consider the following.

The gravity disturbance vector is related to potential

by

6g(r) = d T(r) = VT(r) (A-3)

where T is the scalar anomalous potential. For navigation

studies, 6g and T are the most likely candidate elements

in u of (3 ). The disturbance vector represents the

fdriving terms in the inertial navigation velocity error

derivative. The anomalous potential is related to geoidal

undulation N by (A-l). The geoidal undulation could be

considered an error term in a barometric altimeter used to

stabilize the vertical channel.

4 For discussion then, define

u) g(r)

where the a-frame is an arbitrary orthogonal frame with

coordinates x, y, and z.

Using (A-l), (A-3) can be rewritten as

ax
ax

= ay T(r) (A-5)

a

)8z
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Now the Q-matrix function of ( 8) can be written

Q(rl9r 2 ) = 01,2ET(E1) T(r2) 3:1 (A6

where

a2 2 F2 1

8x1ax 2  aX1 6Y2  ax 1 az 2 g axl
a2 2 2

a a a 1 a2
.YIaz 2  yIay 2  aylaz 2 g ayl

1,2 a2  a2  a 2  1 a

5zlbx 2  azlaY 2  azIaz 2 g az1

1 a 1 a 1 a l/g 2
gax 2  gay 2  gaz2

where the subscripts on the x, y, and z partials identify

the r term involved (e.g. a/ax1 means a/ax for the r

terms).

Physical principals assure that, the partial deriva-

tives in (A-5) are uniformly bounded. The partial deriva-

tive operations of (A-5) are, therefore, bounded and linear,

so the order of these operations may be interchanged with

the linear expectation operator. Then, (A-5) becomes

QQzIz 2 ) 2 )  (A-8)
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where

OTT(El E2) =46T(rl) T(K2 )] (A-9)

With (A-8) and (A-9), it is clear that the Q-matrix func-

tion can be produced from an anomalous potential correla-

tion function basis. The gravity disturbance quanties of

Q(r,r') are related to anomaly through the Stoke's integral

[Ref 3:89] and the Vening-Meinesz integrals [Ref 3;114].

So, a similar line of reasoning can be followed to yield

Q(r,r') as a function of pgg(rr'). The linear operators

of (A-8) are integrals rather than derivatives in this

case.

With this demonstration complete, attention can be

given to the two cases which are likely to require model

development. These are:

a. Mission space geographical restrictions to a

region known to have a residual field statistically

different from the global averages, or

b. Gravity model improvements which change the magni-

tude and the spectrum of the residual field statistics.

Even in these events, the functional forms presented in

Section VI may, yet, be adequate. The model parameters

would need to be re-identified to reflect the new residual

field of interest. The references given for the three

functional forms [Refs 19, 21, 22, and 23] present some

rationale for the parameter identification for the original

models, and these suggestions should be useful in identi-
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fying parameters for the new situation, either geographic

or gravity model.

For the geographically restricted mission, a geograph-

ically restricted, empirical correlation function could be

used to identify the model parameters on the basis corre-

lation function. Where model improvements are considered,

the 'effects of the improved gravity model can be used to

form a new empirical data base. Consequently, a new

empirical correlation function can be generated for subse-

quent model parameter identification. Either method

requires that a gravity data base be at the disposal of

the analyst.

The required data may not be available. Even if it

is, the calculations over all empirical data would be

expensive. An alternative might be considered when studying

the effects of a gravity model improvement. The model

improvement can be viewed as a transformd(.) over the

ellipsoidal model's residual field:

T'(r = ( (A-10)

where T' is the residual field of the improved gravity

model. Note that'd(.) transforms one function into another

function, not just one value of the scalar T(.) into another

scalar value. A suggestion for future research based on

this operator concept is given in Section XI.
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This appendix has presented some of the statistical

model selection issues. A categorical answer to the gravity

disturbance correlation model is not available, but several

examples are developed [Refs 19, 21, 22, and 23] and are

amenable to adaptation.

wl
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APPENDIX B

Conversion of a Spatial, Linear State Space, Statistical

Gravity Disturbance Model to a Temporal Model

The time history of mission position converts the

gravity disturbance from a function of position into an

implicit function of time. The statistical model for

gravity disturbances undergoes a similar transformation.

For the linear state space statistical model, this trans-

formation can be continued to form an equivalent temporal

statistical model for a restricted class of trajectories.

This conversion to the time domain is mentioned in Sections

I through IV, and this appendix provides a derivation to

explain the assertions.

14 The linear state space gravity disturbance model

attempts both to approximate an empirically derived corre-

lation function and to yield auto- and cross-correlations of

all disturbance quantities produced which are consistent

with gravitational field theory. If, for example, 0'g('p)

is the empirical function, we have
O g(*) 2= 1g[Ag(1: l ) Ag(.E 2) ](B-1)

(1l,12) E T

where

T El(rlr2 ) 1YE 2 = r2 Cos (B-2)

The Gauss-Markov model is based on a state vector x
-9

which satisfies the shift invariant relationship

d [ g(J)] = Fg F g() + Gg q(0) (B-3)
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where q is a vector of white gaussian noise sources satis-
fying

The anomaly is an output of this process
Ag(() = C x (B-5)

I,

The model's anomaly correlation, 0 (4), is given by

0Ig(A*) C g xgWCM) CT (B-6)

where

which can be produced from (B-3) and (B-4). The difficulty

of performing this task should not be underestimated.

The modeler must form Fg, GgI Qg, and C in order to pro-

duce o" (O)' These model elements are used in producing
99

a model for which

0" (4) z 0gg(4) (B-8)

Other disturbance quantities produced by extension of (B-5)

should have auto- and cross-correlations consistent with

field theory. A chronicle of this model's development is

provided in Reference 11 for the interested reader.

The model can be viewed as

The error state transition matrix for (B-i) is
= 0(*Ho)F (B-9)

Then,
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_g(4) 0--(4-4o 2Sg(*o ) + 4 t(*-V)Gga(v)dv (B-i)

Using the statistical independence of q(*) and xg( ) with

(B-4), yields the result

P g ( 4 ) " (O xg( ) x IT

0(*-*~p_9(O) (DT(-0
' QGT OT(*-v)dv

+J 0  v)Gg (B-11)

The statistical process is typically modeled to be at steady

state, so

P P( = Pg (B-12)

Since the derivative of P with respect to 4' is zero, it

follows that
GQgGT = -FgPg PgFT (B-13)

Solution for Q in (B-13) is not unique in general since

G-1 could only exist for cases where xg and q have the same

number of elements. The two Schuler loop cases of Section

III provide convenient examples for (B-13) application.

To convert this spatial model to the time domain,

assume * changes according to the rule

*0(t) 4o + X t [V(t)/r(t)]dt = *0 + X 
t w(t)dt

0 to (B-1I)

where

V(t) is horizontal velocity magnitude and non-negative,

r(t) is position radius magnitude, and

-W(t) is central angular velocity.

For this transformation to be valid simultaneously between

all points on the trajectory, the path has to lie in one
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70

Iplane with a total change of less than 1800. Using (B-14)

d* = [V(t)/r(t)]dt = w(t) dt (B-15)

Employing the chain rule, (B-3) can be converted to

ig[(t)] = [w(t)Fg] Xig[*(t)] + Gg A(t) (B-16)

K where

w(t) = w(t)q[(t)] (B-17)

The new noise correlation is

[w(t)wT(t+T)] = W2 (t)Q 6[$(t+T) - *(t)] (B-18)

With the monotonic assumptions above, the argument of the

dirac delta function can be replaced by the Taylor series,

first-order approximation

It can be shown that

A(t) b[Tw(t)] = (T) (B-19)

So, (B-18) can be rewritten as

[wC(t) wT(t+r)] = W(t) Qg b(T) (B-20)

which completes the temporal model of (B-16)

+ _(F tx t)

Note that for V(t)=O, i _X(t)=O, since the noise strength

and the feedback term have w(t) factors. This result is

intuitively satisfying. That is, when position is constant,

the gravity disturbance is constant as expected.

In order for the temporal model to emulate the corre-

lations of the spatial model, some restrictions must be

placed on the type of trajectory used. Specifically, the
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trajectory must be a great circle of less than 1800, and

the central angle must be monotonic nondecreasing. These

trajectory restrictions are further discussed at the end of

Section II.

1
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APPENDIX C

Undamped Schuler Case, Graphical Results

This appendix presents the graphical results of the

undamped Schuler loop study of Section III. The table

below gives a convenient cross reference fur the plots.

Table C-I

Undamped Schuler Loop Graphical Results

Cross Referencu

Type cf Nested
Error Plot Rectangular Trapezoidal Intear!).s

Figure Page Figure Page Figure Page

Position
Variance 192 C-2 193 C-3 194

Pos.-Vel.
Co-ariance C-4 195 C-5 196 C-6 197

Velocity
Variance C-7 198 C-8 199 C-9 200

% Position
Variance C-10 201 C-11 202 C-12 203

Composite
Position C-13 204 C-13 204 C-13 204
Variance

Composite
Velocity C-14 2C5 C-14 205 C-14 2C5
Variance
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Figure C-2. Error in Position Variance, Undamped Schuler
Case, Trapezoidal Algorithm
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Figure C-5. Error in Velocity Variance, Undamped
Schuler Case, Trapezoidal Algorithm
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Figure 0-6. Error in Velocity Variance, Undamped
Schuler Case, Niested Integrals Algorithm
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Figure C-7. Error in Position-Velocity Covariance,
'Undamped Schuler Case, Rectangular Algorithm
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Figure 0-8. Error in Position-Velocity Covarinace,
Undamped Schuler Case, Trapezoidal Algorithm
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Figure C-9. Error in Position-Velocity Covariance,

Undamped Schuler Case, Nested Integrals Algorithm
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Figure C-10. Percent Error in Position Variance,
Undamped Schuler Case, Rectangular Algorithm
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Figure C-I. Percent Error in Position-Variance,
Undamped Schuler Case, Trapezoidal Algorithm
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Figure C-12. Percent Error in Position Variance,
Undamped Schuler Case, Nested Integrals Algorithm
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Figure C-13. Comparison of Position Variance
Errors for the Undamped Schuler C Lse
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Figure C-14. Comparison of Velocity Variance Errors

for the Undamped Schuler Case
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4 APPENDIX D

Damped Schuler Case, Graphical Results

This appendix presents the graphical results for

~ * the Nested Integral algorithm on the damped Schuler loop

case discussed in Section III.
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Figure D-1. Error in Position Variance, Damped
Schuler Case
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Figure D-2. Error in Velocity Variance, Damped
Schuler Case
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Figure D-3. Percent Error in Position Variance,
Damped Schuler Case
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03,

Figure D-4. Percent Error in Velocity Variance,
Damped Schuler Case
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APPENDIX E

Modified Widnall-Grundy Inertial Navigation Error

Propagation Model

The Widnall-Grundy inertial navigation error propaga-

tion model [Ref 9:26-27] is used in several examples in

this study. A modification of the vertical channel feed-

back is made to simulate a damped vertical channel. This

appendix presents the specific equations used to model the

F-matrix.

The nine error state vector elements are defined in

Section IV. The following additional terms are defined for

use in this appendix.

- design mission latitude

r - design mission radius magnitude

g - magnitude of gravity vector

e,n,z - subscripts indicate east, north, or vertical

component respectively

Ve, vn , vz - earth relative velocity

fe9 fn' f Z specific force

Wie earth rotation rate

The following computations are required to form the

F-matrix:

= 'Oie cos 0 (E-l)
Qz = ie sin 0 (E-2)

Components of local level, fixed azimuth platform

angular velocity with respect to the east-north-up frame

are
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I

P -vn/r (E-3)

Pn Ve/r (E-4)

PZ= Ve tan 0/r ( -5)

And components of angular rate with respect to inertial

space are

e =e (E-6)

W)n = n + fln (E-7)

z = P + II (E-8)

For later reference, also, define

kz = Vz/r (E-9)

Let Fij represent an element of F. All elements of F are

zero except the following 40 elements:

F12 = P/cos 0 (E-10)

F13 = - Pn/r cos 0 (E-11)

F14 = 1/r cos 0 (E-12)

F = P /r (E-13)23 e
F25 = 1/r (E-14)

F36 = 1. (E-15)

F42 = 2(anvn + lzvz ) + %Vn/COS2 0 (E-16)

P = P P + Pnkz (E-17)

F44 = - P tan 0 - kz  (E-18)

F (E-19)
F45 ="z + z (E-19)

F46  "'[n - fln (E-20)

F48  -fz (E-21)

F49 = fn (E-22)

F 52 =-ve(4ar + Pn/cos 2 0) (E-23)
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5 P P kz (E-24,)
53 n z

S54 -2w z (E- 25)

S55 k (E-26)

(E-27)

F5 7 =f (E-28)

S59=-fe (E-29)

F6 2  2 _(E-30)
[;2 2 -31

F6 3 = -(g/r Pe (E-31)

F64 = 2 n  (E-32)

F6 5 = 2pe  (E-33)

F67 = (E-34)

F6 8 =fe (E-35)

F P/r (E-36)
73 e-"F7 = 

(E-37)

F7 8 = (E-38)

F7 9 =-n (E-39)

F 8 2 = -z (E-40)

F - /r (E-41)
83 = n /

F84 = 1/r (E-42)

F87 = -wz (E-43)

F8 9 = "'e (E-44)

F =n + P tan 0 (E-45)
92 =zo
F93 = - P/r (E--46)

F94 = tan O/r (E-47)

Fg? = n (E-48)

v F9 8 = -we (E-49)
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The F6 3 term above gives the coupling of 6h into 6v . In

an uncompensated system, this element is predominated by a

+2g/r term which accounts for the vertical loop instability.

For this study, altimeter feedback was simply modeled [Ref

8] as a -g/r term. This modification represents a stable

vertical loop.

In summary this appendix provides the equations that

form an F-matrix for the example navigation studies. Equa-

tions (E-l) through (E-49) supply all the non-zero elements

for the Widnall-Grundy navigation error state propagation

model with a modification to simulate a damped vertical

channel. The required inputs to these equations are Wie'

g, r, 0, vet Vn V z f e' fn' and f These data come pri-

marily from the trajectory model and yield F(t) for equation

(3).
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APPENDIX F

Linear State Space Gravity Disturbance Model

A linear state space gravity disturbance model and its

associated correlation function are required for several of

the examples. An eight-state shaping filter driven by three

independent white, gaussian noise sources* has been developed

[Ref 19] and gives all three gravity disturbance terms needed

for these studies. The statistical interrelationships of

this model are consistent with gravitational field theory

except for minor approximations. This appendix presents the

equations required for both linear state space and Nested

Integral covariance analysis. An overall input-output list

is provided in the summary.

Figure F-1 shows the shaping filter block diagram and

output matrix with

Recall

W[q(t) qT(p)] = Q (t) (p-t) (22)

The noise strengths and correlation parameter for this model

were selected to match an empirical anomaly correlation func-

tion [Ref 19]

2r3 co2  [1 0 01
Qg(t) 2 o 4 0 (F-2)

g 0 0 20

* This model is sometimes referred to as "third order" due

to the three levels of integration separating noise sources
from outputs. This structure forms a third order Markov pro-
cess.
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where is the anomaly variance at the flight altitude.

For the studies which use this model, flight altitude and

velocity were constant; therefore, neither 2 nor are

varied. Recall,
V

where V is the horizontal earth-relative velocity and d is

the correlation parameter. Note: d is not the distance at

which anomaly correlation is l/e of anomaly variance. The

term correlation parameter will be used with the understanding

that this distance applies to the underlying model's indi-

vidual feedback gains, not the resultant filter correlation

distance.

The filter states in Figure F-1 are named xl0 through

X17, since, in this study, xI through x are navigation error

states defined in Section IV.

x )
Xg(t) = (F-3)

XlTt)

The filter outputs are

T in plane deflection angle,

4 -transverse deflection angle,

N - geoidal undulation (not used here), and

Ag - gravity anomaly

For a flight path heading angle cx, the relationship of

prime, q , and meridional, f , deflections to the inplane-

transverse pair is shown in Figure F-1. Since
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Figure F-i. Gravity Disturbance Shaping Filter [Ref 19]
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t) gn (94)

Horizontal elements are given by using g to scale the deflec-

tion angles, and the vertical component is modeled as gravity

anomaly.

6g = -g = g4co s a - gT sina

= g co.s aXll - g sin 1(xl3- X14 ) (F-4)

gn = -gf = -gA sin a - gT cos C

= -g sin a x - g cos c(X13 - xl4 ) (F-5)

6gz= -Ag = -g/2(x 1 6 - xl-xll7 ) (F-6)

From this, the output matrix for (21) and (25) is

0 g cosa 0 -gsina g sina 0 0 0]

C 9 th) e - g g cosa 0 0 0 (F-7)

0o 0 0 0 W2 0 -g/2 Bg2

Since the gravity disturbance process does not begin at to f

the filter is modeled at steady state. P is zero at steady

state which yields

P .0 0
p .

Lg 0 •P 0 (F-8)
P (t) = = F

o0 0 5PT

where 2 2

P (F-9)2g 
2

and
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40 4 3/0 (F-10)
2T 2g2 3/ 3/32

The shaping filter state propagation matrices, F and Gg of

(4 ), can be defined from Figure (F-i) as

1I 0 0 0 0 0 0 0

Gg 0 0 1 o (F-11)
.00 0 0 0 1 0 0

and 0

Fg = FT 0 (F-12)
0 0 F T

where

F = (F-13)

and

F= -5 0 (F-14)
0 1 - ]

With this last set of equations, the gravity disturbance

model for linear state space analyses is complete. The

resulting correlations need to be expressed for Nested

Integrals. These correlations will first be expressed in

the transverse-inplane-down coordinate T-frame of Ref 18.

Then, the correlation matrix function will be converted by

a similarity transform to the east-north-vertical n-frame

in which the navigation analysis is conducted.
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Since the anomaly correlation is isotropic in heading,

cross correlations of transverse deflection with the other

terms are zero. This result can be deduced from Figure F-I

where 4 is produced by a statistically independent shaping

filter. The Q-function has the form for rI and r2 sepa-

rated by 4 central angle (

QT(r 1 'r 2 ) 0 OTT 0(9T (F-15)

where the superscript r indicates the coordinate frame and

where, for example,

OW = r (r') (F-16)

the expectation is over all (r,r') pairs in the sample space'4
which are separated by * central angle.

For brevity define

M : r!k (116)d

Then, = ) 2  e- M 1
= 2 (l + M) (F-17

44 2g

( (I + M M2 ) e - M (F-18)
TT 2g2

Y(2) l +2 (1 + M-M 2 ) e - M  (115)gg =g
g2

(*) Cy -(l + M) e - M (F-19)Tg

O(q) = - 0( ) (F-20)
gT Tg
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0. ( -( = () - 0 (F-21)
T = T g2 4

Using (116) through (F-21), Q(r,r) can be formed with (F-15).

This correlation function satisfies a need of Nested Integral

analysis. Q(r 11r 2 ) is formed in the T-frame, inplane-

transverse-down, coordination and the navigation error terms

are in an n-frame, east-north-vertical. An arbitrary vec-

tor Z, expressed in n-frame coordinates is written Zn

Define CTn as the coordinate transformation matrix. Then

Zn Z T  (F-22)

Recall that heading angle a separates the north and inplane

axes in the horizontal plane, but note that a, here, is not

defined by V.

transverse north

(cro ssrange)
inplane

(downrange)

a
~east

C is given by, paraphrasing (F-22),

rn
east -cos a sin a 01 transverse

north = sin a cos a 0 inplane (F-23)

vertical 0 0 -1] down

Since,I
=nT  CTn 1 = TnT (F-24)
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Qn(,l .E2 ) CnT QT(rlr 2 ) CnTT (F-25)

This Q(El1 r 2 ), then, is the form required to interface cor-

rectly with the Widnall-Grundy navigation error model. The

coordinate transformation performed here could have been

performed in the G-matrix with a redefinition of u in (110)

to the T-frame rather than the present n-frame coordinates.

The heading angle, a, of (F-23) must correspond to the

navigation coordinates in effect at that time. The argu-

ments of Q(r 1: 2 ) are two positions, r(t l ) and r(t2). The

great circle arc from r(t I ) to r(t 2 ) has heading a1 at the

r(t 1 ) end and a 2 at the r(t 2 ) end. In the Nested Integrals

approach, for ti < tn Q(t n , ti ) evaluations are r(t n ) and

r(ti). an must be used since t=tn when these calculations

are performed in these evaluations. If position coordinates

are given in longitude X, latitude , and altitude h, the

heading angle needed is

=tan Isin (Xn- Xi) cos 0i I
On = tan-Icos Oi sin on cos (Xn-Xi) - sin 0i cos 0n

(F-26)

The central angle between r(ti) and r(tn) is

in = cos-1 [cos 0i cos 0n cos (X n-i) - sin ¢i sin On]

(F-27)

These complete the requirements for Nested Integrals analysis.

In summary, this appendix has presented a previously

developed LRef 19] eight-state, linear shaping filter model

for the gravity disturbance process. For the linear state
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space covariance analysis method, inputs are V, d, g, 2

and cL. The outputs are

F 9 (t) of (4) and (9 ) given by (F-12) through (F-14)
and (85)

G (t) of (4) and (10) given by (F-li)

C (t) of (5) and (9) given by (F-7)

Q (t) of (6) and (14) given by (F2)

Part of the initial condition for (14) is given as

P (t ) in (F-8) through (F-10).
L~ go

2The Nested Integrals method inputs are g, d, g os 0

cos 0., sin On, sin Oi, ki, and Xn; the output is

Q(r ,r-) in n-frame coordinates using (115), (116),;-n -1
and (F-17) through (F-25) where

central angle 4 in is given by (F-27) and

- arc heading an is given by (F-26).
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APPENDIX G

Great Circle Flight Path

The trajectory generator is required to yield position,

velocity and specific force throughout the interval of study.

A general trajectory generation program [e.g., Ref 7 ] could

be used for this purpose; however, computer resources can

be conserved for this study by programming the following

closed-form solutions. An input-output list is provided in

the summary to this appendix.

A spherical earth of radius Re is assumed. Two sets of

earth-centered, earth-fixed coordinates facilitate the devel-

opment. The a-frame is defined by x-axis through the equator

where the great circle crosses while the path is moving

north. The z-axis is along the north polar axis (parallel to

and the y-axis, in the equatorial plane, completes the

'4i right-handed coordinate set. The b-frame has the same x-

axis but the y-axis lies in the great circle plane. Figure

G-1 shows this basic geometry.

The basic angles of interest in Figure G-1 are

i - the earth relative inclination of the path

- the longitude from xa

0 - geocentric latitude

A- great circle, earth central angle

For brevity, time arguments are not given. The radius magni-

tude, r, at constant altitude, h, is

r =Re + h (G-1)
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.1 Z

zaa

Figure G-l. Great Circle Geometry: Earth-Centered,
Earth-Fixed Coordinates

Since h is constant, r is constant. Now since V and h are

constant

V= (tt) + A (G-2)

The central angle *J(t2 t1) between r(ti) and rt)is simply
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cos A
rb r i (G-4)

The coordinate transformation from b-frame to a-frame is

[10 0l
C ba 0 Cos i -sin i (G-5)

0 sin~ i Cos iJ

So,

cosA

r a r cos i sinA( (G-6)

X tn- (Ya/xa) =tan- (cos i tanA) (G-7)

0 2.2 + Y22 2G282
Cos 0 a ar cos2 i sin

sin - = sin i sinA G9

From Figure G-2, the heading angle cc is defined. For a

great circle

cos i = sin a cos 0 (G-10)

sin a = cos i/cos 0 (G-11)

+________2a -goo < A <~ 900

cos aL=(-2
l-sin~a 900 < A :5 2700 (-2

Since the velocity vector is of magnitude V and lies a

radians clockwise from the north axis in the horizontal

plane,

v= V cos CL (G-13)

and

Ve = V sin a (G- 14)e;
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* North

meridional

great circle

equatorial

Figure G-2. Great Circle Heading Angle

Since h is constant

=z 0 (G-15)

at. + f +_i Xi (G-16a)

a ne r A l i -ae + 2 W i e X V + i e X -i X r ( G -1 6 b )
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V = earth relative velocity

i - subscript means with respect to inertial frame

e - subscript means with respect to earth-fixed frame

f - is specific force vector

- is gravity vector

Wie - is earth rotation vector

Using

0

g7= (G-17)

0
ae 0 (G-18)

(~~~ Wi {ie}

f= + Wie XV- g (G-19)

f <fe -2Vgie sin 0 cos aL

= 2Vie sin 0 sin oL (G-20){}I g-: V2 }V1.5. r ie cos1
Equation (G-l), (G-7), (G-8), (G-9) provide the position

coordinates needed for Nested Integrals correlation evalu-

ation. Latitude 0 need not be found directly since only

sin 0 and cos 0 are required for the * and an calculations.

For F-matrix evaluation, these equations are supplemented

by the relative velocity, (G-13) through (G-15), and spe-

cific force (G-20).

In summary, a great circle trajectory has been modeled

in sufficient detail to support the covariance analyses of

this study. Inputs are t, to Re, h, V, Ao, i, Wie' and g.
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Outputs are r, X, cos 0, sin 0, V sin a, cos a, and fn.

These outputs interface with other models and analyses as

follows:

1) g, r, cos 0, sin 0, _f, and _fn for F-matrix evalu-

ation of Appendix E

2) cos a and sin a for C(t) evaluation of (F-7) in

Appendix F

3) X, cos 0 and sin 0 for Nested Integrals position

data to be used in an and *in calculations of

(F-26) and (F-27) in Appendix F.

4) h for Q(r 11r2 ) evaluations for the Tscherning-Rapp,

and the Heller-Thomas correlation models used in

Sections V and VI (see also Appendices J and K).
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APPENDIX H

MINOR CIRCLE FLIGHT PATH

The minor circle flight path trajectory model is

presented in this appendix. Based on input data which shall

be summarized later, this model provides the position,

velocity and specific force information required for the

covariance analyses used in this study.

The basic geometry and the earth-centered, earth-fixed

coordinates (a-frame) are pictured in Figure H-1. In this

figure

X is longitude from xa

0 is geocentric latitude

A is minor circle angle

r is radius vector

rc is minor circle radial vector

Y earth relative velocity

lb fixed radial vector to center of minor circle

The radius magnitude is constant

r = Re + h (H-1)

where Re is earth radius and h is the constant altitude.

The minor circle constant angular velocity is

W = r (H-2)

Now the minor circle angle is given by

A = 0(t-to ) +Ao (H-3)

where to is initial time and A is initial angle. Note that

time arguments are dropped for brevity.
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Now given

rb  I b  r rc(H4

and

rb = rb  } (H-5)

-b1

Also,

0{c oa sin (H-6):. %: rIcos~j

So,:rb
a a a

-C Eb rc sinA (-7)

Lr c cosA

Va = ckJCos = V cosA (H-8)
Sim-sinA

The coordinate transformation from the a-frame to the east-

north-vertical n-frame is

C na = -sin 0 cos X -sin 0 sinX cos 0 (H-9)

cos 0 cos x cos 0 sin X sin 0

Now, the required earth relative velocity components are

given by

{v} Cna

- A cos 0X

V -cosA sin 0 sin X - sinA cos (H-10)
COSA cos 0 sin X - sinA sin
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r - r

fZn

minor circle
flight path

Figure H-1. Minor Circle Geometry

To express these latitude and longitude forms define

=x 
7 7  a r2 + r 2 cos2 A (-

sin X =ya/rxy = r c sin A/r xy (H-12)

Cos X =xa/rx = rb/rxy (H-13)

X tan- (Ya/xa) =tan-
1 £r c sinA/rbJ (H-14~)
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sin 0 = za/r= r cosA/r (H-15)

cos 0 = rx/r (H-16)

Substituting cos A, sinA, cos 0, and sin 0 back into (H-10)

yields the expected

vz = 0 (H-17)

ve r.V72 cosA /r (H-18)l vn = -V r sin A/rxy (H-19)

Now specific force

f V+ 2Wi e X r -g (G-19)

So with

0
a 0 (G-18)

Wie OielJ'i' e

gfl= {~}(G-17)
-91
f ,

rV siflA(2w ie rc cos A - (ir b)/ry
b cosA (2. rc cosA- wr)/(r.r (H-20)

~Vr cb xy- V(2ie rb cosA + V)/r

These results complete the minor circle trajectory. The

required inputs are t, t, R, h, rc, V A, g, and Wie'

The outputs are as follows: g, r, cos 0, sin 0, v , and

fn for F-matrix calculations; a for C(t) calculation 
in

(G-7) for linear state space covariance analysis; and 
cos 0,

sin 0, h, and X for Nested Integrals.
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The equation, (113), for central angle presented in

Section IV can be derived by using

*1,2 = cos- l[I l * 21/(rlr2)] (H-21)

where r I is r(tI ) and r 2 is r(t2 )

when (14-7) is used for both r and r2 , the result is

*1,2 = cos - s t (H-22)

al

1~
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*1 APPENDIX I

-Circular-Error-Probable. Computation

The analyses performed in Sections IV through IX used

a nine-state navigation error model and, therefore, produced

an 81-element covariance matrix. Since this matrix is

symmetric, only 45 elements need to be considered in any

comparative study. In the verification study of Section IV,

all 45 independent elements are presented for the great

circle case comparison. Such an exhaustive comparison is

rarely necessary since the primary interest is in position,

and perhaps velocity, statistics. The desire for a more

compact performance index can be met with some second order

statistic of position.

Several alternatives are available, but circular-error-

probable (CEP) is the most common. This statistic gives the

horizontal-rlane radius which, when centered on the mean,

encompasses one-half the population. This appendix presents

the method used to calculate CEP in the studies of Sections

IV through IX.

CEP can be calculated by two meth ds. The entire popu-

lation can be accounted for by the instructions above, or

the frequency function can be integrated until the radius

is found, which gives a probability of one-half. Neither

the population nor the frequency function are known in gene-

ral. Since the navigation error propagation is a linear

process, the cases which employed the gaussian noise models
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will have multidimensional gaussian distribution for the

error states. In these instances, a rather straightforward

method is available to estimate CEP.

The population is not known for the other cases, but

the errors which drive the navigation covariance are numerous.

That is, the distributed earth mass nonuniformity can be

construed as millions of error sources, and the gravity

disturbances are the sum of these errors. Appealing to

the Central Limit Theorem [Ref 15:109], the error population

is probably well-approximated by a gaussian distribution.

If the gaussian distribution is used as an approximation

for cases of unknown population, then the same method can be

used to calculate CEP in all instances.

Of the 45 independent elements of the navigation error

" covariance matrix, only three are required in the CEP calcu-
lation. These elements are the latitude and longitude error

covariances. The ultimate CEP answer will be in linear

measure, so these angular errors must be converted to linear.

The east component of position error is

6xe = r cos 0 6X (6-X)

and the north component is

6xn = r 60 (1-2)

Let Pp be the position covariance. Then,p 2
P 6 LX e 6 Xn e 6 n]

6x 6 x(-3)

and
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P r 2 Cos 2 9(6) 2 ) r 2 Cos 0'6 14
p 2cos 0 C(6X 60) r 2. (602)J

The three expectations needed to evaluate (1-4) come directly

from the navigation error covariance matrix for the state

vector definition used in Sections IV through IX.

For the bivariate, normal distribution described by

P pfrom (1-4), CE? was approximated using the following

procedure [Ref 20]:1

Define,

t 2 =(g(6x2) =r 2 cos2 0610(6X2) (1-5)
e Qe 0f

02= (6 2 ) =r 2 (f(602) (1-6)

- 1 X(6x r2 cos (k6) 17
0jecn e n ajeon 'x6)(-)

14A new coordinate frame, x-y, is defined by rotating y from

the east-north frame until the correlation coefficient is

zero: )north
y

Y

6 ox 6 y) = 0. (1-8)

For this condition,

45__________ 0n Oe annIY
241



$Then,

2 2 cos 2Y + aen sin 2y + 2 sin 2y (1-10)

2 02 sin2 Y OeG sin 2y + 02 cos2  (I-l)
y ean

Next, the maximum and minimum variances are identified.

0max = Maximum (a., a y (1-12)

Omin =Minimum (ax, ay) (1-13)

Finally the estimate is made by

CEP = 0.562 Umax + 0.615 amin (1-14)

r In essence, (1-5) through (1-7) transform the statistic

to linear measure. Next, (1-9) gives the resolvent angle

with which prime variances are calculated by (I-lO) and

(I-li). Then, the prime variances are ordered by (1-12)

and (1-13), and, finally, the CEP calculation performed by

(1-14). The input data for these calculations are r, cos 0,

Cg(6 2), (6)2), and (6ok 60). The output of these compu-

tations is an estimate of circular-error-probable.

An exception to the above rule is the CEP calculation

for the Nested Integrals results of Section V. The Monte

Carlo results cited in Section V were based on downrange and

crossrange variances. The above procedure can be used to

yield the desired comparable result if (1-9) is not applied.

For a downrange - crossrange resolution of the data, simply

use the complement of the heading angle in place of the (1-9)

result. For Section V, then, the heading angle is an addi- 4

tional required input.
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APPENDIX J

Anomaly Degree Variance Correlation Model

The statistical analysis of navigation errors induced

by gravity disturbances can be based on a disturbance corre-

lation model as discussed in Sections I and II. Correlation

models are also used in smoothing and predicting problems,

and geodesists have used this approach in processing gravity

measurements. These gravity measurements come in many forms

(e.g., anomaly and vertical deflections), and all measure-

ments cannot be made on a convenient surface. Therefore,

( some advanced statistical models for geodetic data proces-

sing have the capability to produce all the needed correla-

tions for navigation analysis.

The Tscherning-Rapp anomaly degree variance model [Ref

21] was developed for a geodetic application. This corre-

lation model was used in the Monte Carlo analysis [Ref 101

and is used in Sections V, VI and VII of this work. This

appendix provides some background on this model and on the

manner in which it was used in these navigation analyses.

The anomaly correlation function from the geodesist's

viewpoint is the mean over some region of anomaly products.

The ensemble of missions which gives the sample space basis

for inertial navigation studies is not the geodesist's per-

spective. To him

Pgg(1:,Z) =,/#EAg(.r) Ag(r') I (J-1)

r E T
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where

is the mean operator over the set Twhich restricts

(rr') pairs (e.g., to a * central angle separation).

For continuous data over a spherical surface and central

angle as the shift variable,

T= C(rr')lr'r' = r2 cos f (J-2)

and

1 2r 7r'~2 21rCP T= XV 'r i/2 1 S2 Ag(0,4 ) Ag(O',X)
gg) X=O =-7r/2 f a=O cos 0 d, dL da

(J-3)

where

0 is geocentric latitude

X is longitude

a is heading at r of the great circle to r'.

This difference in approach in defining the correlation is

artificial. In fact, the statistics defined by (J-3) are

precisely the sort which "represent" the anomalous field

over which the navigation mission occurs.

The form of (J-3) does define a function with both

homogeneous and isotropic features (see Appendix A). The

integrals over all 0 and X produce a global average consis-

tent with a homogeneous assumption. The integral over all

a gives a function which represents an average for all

headings - isotropic assumption [Ref 4,85].

Global data is required to approximate the integrals in

(J-3). Reference 21 discusses the problems encountered in

estimating cpgg(4) from a restricted data base, but empirical

correlation functions have been produced in spite of diffi-
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culties. The modeling approach is to create a closed-form

mathematical model which is capable of approximating this

empirical correlation function. Then, one derives other

needed auto- and cross-correlations from this basis (see

Appendix A).

The correlation function of (J-3) can be expanded into

a series of (zonal spherical harmonics) Legendre polynomials

as [Ref 4:85]
CO

Sgg( ) =7 Cn Pn (cos t) (J-4)n=0

where

Pn() is the Legendre polynomial

cn is the associated coefficient.

The name "anomaly degree variance" comes from the observa-

tion that each cn represents a contribution to the anomaly

variance. This form can be generalized to points off the

reference surface by defining
R R2

s = -(J-5)
rr'

where

R is the spherical surface used as a datum (Bjerhammer

sphere [Ref 21152]).

Whereas anomaly is not harmonic (satisfies LaPlace's

Equation), the product r.Ag is harmonic [Ref 3:90]. So,

the general form for (J-4) is

CO

gg( P) =  cn sn+2 Pn(Cos (J-6)
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Note that altitude information enters (J-6) through the

radius magnitudes in (J-5). The statistics of (J-6) are

therefore nonstationary with respect to altitude change, but

for a fixed altitude, the statistics are stationary.

Low frequency coefficients of (J-6) can be identified

using the empirical data base. The high frequency terms

must at some point be approximated. All cn are non-negative

[Ref 4:85] and some are positive giving a positive definite

variance

= c (J-7)
n=O

This equation demonstrates that cn represents the anomaly

variance contribution from the n-th degree.

One approach to modeling the anomaly correlation is to

create a mathematical form which will fit the low ordered

Cn's and prescribe the manner in which high frequency

coefficients approach zero. Tscherning and Rapp propose

five such rules in Reference 21 and develop models for four

of these. These complete models include auto- and cross-

correlations for anomaly, deflection angles, and geoidal

undulation. Each of these models is based on an algebraic

expression relating cn to n.

The fourth rule was completely developed and program-

med for computer application. That model is, also, recom-

mended in the conclusion [Ref 21:30]
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0 forn < 2
Cn = A(n- l for n > 2 (J-8)

I (n-2) (n B7

• where A and B are constants identified to approximate the

empirical correlation. Then,
00 A~n-,1) R2 y+2

• gg(*) = Z(In-2) (n+B)\ 7, Pn ( Co s P(-9)
n=3

The values for A, B, and R were determined from empirical

data and are presented in Table J-I, below.

Table J-I

Model 4 Data

Symbol Value Units

A 425.28 mgal2

B 24 (exact)

R 6369.8 * km

• based on a 6371.0 km mean
earth radius

Equation (J-9) is obviously not a simple, computation-

ally efficient, closed-form mathematical expression. One

property of Legendre polynomials redeems this modeling

choice. Consider the triangle formed by r and r's

ar/

4
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By the law of cosines

a 2 =r 2 + r' 2 - 2rr' cos4, (J-lO)
•.l =1 11= (J-11)

ir2 - 2rr + r' r

where, for now,

s = r'/r (J-12)

and

b = cos $ (J-13)

Expanding the right hand side of (J-ll) as a power series in

s gives [Ref 3:32-33]

Z s1 Pn(b) (J-14a)
r n

r 1- 2bs + S2 n=O

Z s Pn(Cos ) (J-14b)14 _______________2 n=Q
i1 - 2s cos + s

Now (J-9) can be written as

SeP(4) = s A s(n- sn P n(cos  (J-15)

n=0 (n-2)(n+B)

where

s = (J-16)

rr'

By partial fraction expansion

n-I /(B+2) + (B+I)/(B+2) (J-1)
(n-2)(n+B) n-2 n+B

So a closed-form expression for %pgg can be found if

00 n

n -.. Pn(cos 4)
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can be given in closed form using (J-14b). Expressions

for these terms are derived in Reference 21 by using the

fact that

sn+i
S=n+- ds =- n+i > 0 (J-18)

The derivations are presented in Reference 21, pages 30

through 46, and will not be repeated here. The above

discussion shows the general approach taken.

A computer subroutine COVA was developed and documented

in Reference 21, pages 85 through 89. This subroutine uses

Model 4 and the data in Table J-I to produce the following

correlations as a function of central angle:

a. Anomaly autocorrelation,

b. Anomaly and downrange deflection cross-correlation,

c. Anomaly and geoidal height cross-correlation,

d. Downrange deflection autocorrelation,

e. Crossrange deflection autocorrelation,

f. Downrange deflection and geoidal height cross-

correlation, and

g. Geoidal height autocorrelation.

Of these a, b, d, and e are used in Nested Integrals

analyses of Sections V, VI, and VII.

Since the intent of this model is to provide high

frequency Cnos, provision was made to specify up to the

first 300 coefficients. The closed form expression for

the infinite summation is altered by removing the effects

of each coefficient to be replaced and adding in the
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effects of the user-supplied coefficients. This feature

is used in the spherical harmonic modeling study of Section

VII.

In performing the Monte Carlo study discussed in

Section V, Geodynamics discovered minor errors in COVA

[Ref 10,18] and these changes should be made before the

subroutine is used on a trajectory with altitude variations.

The subroutine used in this study was, in fact, programmed

by Geodynamics. The subroutine was verified by recreating

Table 10 of Reference 21.

The anomaly degree variance correlation model developed

by Tscherning and Rapp offers an alternate form of statis-

tical model for use in the analysis of navigation errors

induced by gravity disturbances. The corrected subroutine

COVA offers a convenient useful tool for direct use of this

model in gravity model performance evaluations.

I1

.1

250



11~

APPENDIX K

Attenuated White Noise Correlation Model

For long range missions such as intercontinental

ballistic missiles, the effects of earth curvature must be

considered in navigation performance analyses. The linear

state space gravity disturbance correlation model is based

on a tangent-plane, flat-earth approximation. Such flat-

earth models are of questionable validity on long-range

mission analysis. The attenuated white noise correlation

model was developed to provide a round-earth alternative.

This appendix provides a partial summary of this develop-

ment and lists the correlation functions used in the attenu-

ated white noise case of Section VI.

The gravity disturbance process on the earth's surface

can be statistically summarized in the form of the anomalous

potential correlation function (see Appendix A).

OTT(Rr') = 6'[T(r) T(r')] (K-l)

The anomalous potential is a spatially correlated process.

A ploy used in modeling a temporally correlated process is

to view the random occurrences as the output of a linear

system driven by white gaussian noises. Symbolically,

q(t) Convolution 21--x(t)_ Integral

white, temporal shaping correlated, temporal
noise filter output
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The approach used by Heller [Ref 23] in producing the attenu-

ated white noise was to model the earth-surface anomalous

potential as the upward continuation of a white noise pro-

cess over a subterranean sphere [Ref 4:4-51. Symbolically,

Upward
T(_) 3 Continuation 3T(R)

Integral

white, spatial Laplace's correlated, spatial
noise Equation output

where

P is radius vector on the sphere, and

R is radius vector on the earth's surface.

white • @ Earth's
nocse Surface

The T( ) process is white noise on the sphere with a

constant variance given by

(TT(*) A f(*) (K-2)

and f(*) is the unit impulse function on the sphere satis-

fying
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2 '2 f(t) sin d* = 1 (K-3)

or

f 2 (K-4)
21rp sin 4

The anomalous potential above the noise source is given by

upward continuing (K-2). An extensive derivation is given

in Appendices A through F of Reference 23. The result is

OTT(r,r') = OTT(rrJ,)

d3 (2R-d)3[ (rr')2 - (R-d) 4 2

[R4 -(R-d) 4][(R-d) 
4 +(rr') 2 2rr'(R-d)2 cos *33/ 2  (K-5)

where UT2 is the earth surface variance level (let r=r'=R

and 4=0). A complete set of disturbance terms and auto-

and cross-correlations were derived from (K-5) by methods

outlined in Appendix A of this work. The key benefit of

this model is that (K-5) correctly accounts for altitude

changes in r or r' without requiring a new integral evalu-

ation [Ref 23:4-6].

The depth parameter d acts in a similar manner to the

feedback gain in the linear state space model. Correlation

distance is directly related to d. For a d of 10 nm, the

earth surface arc correlation distance is 11.15 nm.

When d is 500 nm, correlation distance is 468 nm [Ref 23:

pF-131.

Asymptotic forms of these round-earth correlation models

were also developed in Reference 23. These asymptotic forms

come from first order expansions in i and in d/R [Ref 23,
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4-9 through 4-11]. These mathematically simpler expressions

were used in the Section VI study.

The asymptotic version of' (K-5) is

= 4d2 (2d+h+h') 2(X)

~TT~r~,PI L(2d+h+h ) 2+ R2 ,j3 T

where

h =r-R

and

L h' r' -R.

For this study OTT was not required. The associated model

correlations which were used are as follows:

Define G2 the earth surface gravity anomaly variance value
g

as 2

2--37- (K-7)

Let, ~:~~2T32(K~8

A=2d + h + h' (K-9)

B = d4c VA2+)/ K-10)

C =A -B (-i

Then the transverse disturbance autocorrelation is

0 (r,r',, C(A +T2  (K-12)

The inpiane disturbance autocorrelation is

The inpiane and radial disturbances cross-correlation is
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0(r,r,) = TB(4A2-T 2) (K-14)

The radial disturbance autocorrelation is

0gg(r,r,) = C(2A 2-3T 2) (K-15)

2
Given (K-15), the modeler has two parameters, 0 g and

d, to use in approximating an empirical correlation func-

tion. A more flexible model can be created, however, by

simply viewing the white noise shell which gave (K-15) as

one of a set of statistically independent processes. With

a agi and a di for each of n shells, the modeler has 2n

parameters with which to build an overall correlation model:

For example,
n

0 (r,r',*) = (Cr,r',*) (K-16)
gg i=1 99

The other auto- and cross-correlations are summed in the

same manner. A three-level model was proposed and para-

meters identified in the Reference 2 3 study. These para-

meters were used in the Section VI example and are given

in Table K-I.

Table K-I

Parameters for the Three-Level

Attenuated White Noise Gravity
Disturbance Correlation Model

dgi gi Percent of
i n.m. mgal 2  Total Variance
1 1002 175 9.6
2 179 284 15.6
3 39.7 1362 74.8
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The percent of total variance is also provided in this

table. Clearly the high frequency terms dominate the

-. spectrum.

The correlations required in the Section VI study

can be calculated with Table K-I data and equations (K-8)

through (K-15). Other than the model parameters above

, h, and h' are the only required inputs. Appendix F

explains the calculation of 4 and the transformation of

the Q-matrix from the transverse-inplane-down coordinates

to the east-north-up coordinates of the navigation error

propagation 
model.
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APPENDIX L 4

Gravity Disturbance Statistical Models Comparison

This appendix presents a graphical view of the auto-

and cross-correlations of gravity disturbance components.

The correlations are calculated using three different func-

tional forms:

a. Linear State Space. This shaping filter model is

presented in Appendix F with additional discussion

in Sections IV and VI.

b. Anomaly Degree Variance. This Legendre polynomial

form of representation is presented in Appendix J

with additional discussion in Sections V and VI.

c. Attenuated White Noise. This model, based on a

subterranean white noise anomalous potential, is

presented in Appendix K with additional comments

in Section VI.

The altitude level was zero for this comparison. The coordi-

nate frame in which gravity disturbances are assumed to be

expressed is a local-level, transverse-inplane-down

(crossrange-downrange-down) frame used in References 19,

21, and 23. Since all three models are isotropic, the

transverse component cross-correlations with both inplane

and down components are zero, hence are not plotted.
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